
evm8: an embedded 8/16 bits virtual machine.
Sebastien Lorquet <sebastien@lorquet.fr>

2010 – 2012
version B5

Abstract : This document presents a virtual machine for use in embedded computing systems.
It describes a virtual processor architecture and instruction set, as well as executable format
encoding.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 France License.

1

Contents
1 Revisions..4

2 Introduction..5

3 System architecture..6
Overview..6
Modules.. 6

Non volatile (NV) module registry...6
Volatile module registry..7

Execution context...7
Memory.. 7

Code memory...7
Data memory..7

Boot process...8
Exceptions..8
General purpose registers..9
Special registers...9
Stack.. 10
IO space..11
Instructions encoding...11

4 Instructions description...14
ADD, ADDC...15
ADDQ..16
AND.. 17
Bcc.. 18
CLRB,CLRBC...19
CMPL... 20
DIV.. 21
IOCTL.. 22
JSR.. 23
LIBCALL...24
LIBCALLX..25
LOAD... 26
MOV.. 27
MOVC.. 28
MUL.. 29
MULQ.. 30
NOP.. 31
OR.. 32
RESET... 33
RET... 34
RETI.. 35
RETL... 36
ROL, ROR, ROLC, RORC..37
SETB,SETBC..38
SEXT... 39
SHIFTL, SHIFTR
SHIFTLC, SHIFTRC...40
SLEEP.. 41
STORE... 42
SUB, SUBB..43
SWAP.. 44
TEST... 45

2

TESTC... 46
TESTB,TESTBC..47
TRAP... 48
XOR... 49

5 Assembly syntax...50
Overview..50
Instructions...50
Symbols..50
Directives...50
Instructions...51

6 Relocatable format..52
Relocation types...52
Format..52

7 Executable format...53

8 References..54

3

1 Revisions
Revision Date Description
B6
B5 2012-06-08 Added relocations types for review

Executable format after Relocatable format
Separate left and right operations

B4 2012-06-06 Reorganized instructions description, added table and front page
corrected code size in execution format
More stack pointer clarifications.
Interrupts simplification
Add default processor status reg values
Add creative commons licence

B3 2012-06-05 When no kernel module is loaded, the default app starts in user
mode.
Stack pointer clarifications. Remove SP, keep USP and SSP.

B2 2012-06-04 Clarifications in memory management
Instruction encoding table completion
Started description of each instruction
Submitted for review.

B1 Somewhere in
2010

Initial developments and concepts

4

2 Introduction
The goal is to define an embedded machine that can execute code on different 8-bits
architectures, as well as on custom hardware CPUs, such as an FPGA implementations.
Requirements are:

• Simplicity
• Speed
• Stability and robustness (does not crash “a lot” when a program fails, provides crash

interception and recovery)
• Security (compromission and malfunction is limited if a rogue program is loaded)
• Low VM footprint
• Dynamic library/module management
• Optimal execution on 8 bits micro architectures such as PIC, AVR, HC11 and MCS51.

5

3 System architecture

1 Overview
The processor has an Harvard register based architecture, with 3 separate data spaces:

– The code space holds executable instructions and constant data (TXT et RODATA);
– The data space holds the stack and module data (BSS and DATA);
– The IO space holds peripheral control/status registers.

The code is organized in executable modules, loaded by the VM loader, which is system
dependent.
The processor has 2 states, allowing different kinds of privileges: a supervisor mode, and an
user mode. The supervisor mode can do I/O operations, while the user mode cannot.
Of course these execution modes are distinct from the main execution mode of the host
system, which is not discussed in this document.

2 Modules
Code is organized into modules. Modules can be programs and libraries.
A module contains metadata for management, and opcodes.
Each module can only access the opcodes that are stored in the same module. The PC register
is 16-bits wide thus allowing any module to extend to 65536 code bytes. The module load
address, and the fact that this physical address is possibly wider than the user available PC and
not pointing into main CPU memory, is unknown to the code. This ensures that no code can be
fetched from outside the module and gives a large amount of flexibility for the underlying
implementation. Code from other modules may be called via import and export tables.
Executable modules are designed to be position independent, so that they can be loaded and
unloaded at any time in the system lifetime, without relying on the load address.
All modules have a 8 bytes long name. These bytes are not required to be ascii characters.
Trailing zero bytes or space chars can used for padding.
Any module can export functions. They are declared in an export table, which is a list of
program counter offset values that mark exported functions, indexed by a 16-bit number.
Any module can import functions. They are declared in an import table, which allows for
dependency checking at module load time.

Non volatile (NV) module registry
The NV Module registry is a table, holding permanent (e.g. information that do not change
during module lifetime) management information about modules. This table is system
dependent, and should contain a minimal set of fields to allow localization of the modules
inside the system NV memory and identification of modules attributes.
The executable format described later in this document has header information that can be
used as a module registry info. The minimal required information is:

– module name (8 bytes)
– module position in memory (system dependent, typically 2-3 bytes)
– flags (at least 8 bits or one byte)

The flags are defined as follows:

6

B7 B6 B5 B4 B3 B2 B1 B0 Description
- - - - - - - 1 Default application. This module will be run on

machine boot.
- - - - - - 1 - Kernel module. This module has interrupt

handlers.
0 0 0 0 0 0 - - RFU, must be set to zero.

There can only be one kernel module and one default application.

Volatile module registry
A memory zone is dedicated to store volatile information about modules. This includes the BSS
start address, which is allocated at boot time.

3 Execution context
One or more execution context (e.g. tasks) can be active at once to support single or
multithreading. Scheduling and multiple stack allocation are not defined yet.
An execution context stores the volatile information for the currently running thread, including
all the general purpose and special registers, along with the current module being executed.
(this information is system dependent and can be a single byte if no more than 256 modules
are supported).
The maximum number of contexts (threads or tasks) that can exist in the machine can be fixed
or dynamic.

4 Memory
Code and Data addresses used at runtime are virtual and valid in the current module only, each
module lives in a separate address space.

Code memory
The physical structure for the global code space is not defined in this specification. It just have
to be a set of non volatile memory zones, one for each module. There no requirements for this
memory to be global, contiguous, or directly addressable by the CPU.
Some memory allocation strategy can be used to allocate memory to modules in a single pool,
or modules can be separate non volatile objects having nothing in common. No specific
alignment is required, since this memory may not be directly addressable central memory, but
rather an external memory storage device. This device shall provide random byte read
operations. The code space also stores constant data information.

Data memory
The data space is volatile memory allocated to an executable module when the machine boots
or a new module is loaded at runtime. Again, there are no requirements on the structure of this
memory, it does not have to be a single contiguous memory pool nor CPU addressable memory.
At load time, each module is allocated a volatile memory segment for its BSS and initialized
DATA variables. This memory information is retained in the “volatile module registry”. At run
time, data elements are addressed using offsets, e.g. the first BSS/DATA byte has zero address.
The real memory has to be managed by the virtual machine by adding the real data address to
the offset provided in the runtime instructions. BSS/DATA accesses are checked so that any
module cannot use memory that does not pertain to the same module.

7

5 Boot process
At startup, the VM does the following:

– A 128 byte supervisor stack is defined. This will probably be allocated in the first or last
available RAM addresses.

– Affect a BSS RAM block for each loaded module (the required size is indicated in the
module metadata) , initialize it to zero and save their address in the volatile module
registry. For systems where the RAM memory is shared between the BSS blocks and the
Stack blocks, it is recommended that all BSS blocks are allocated to the lowest possible
addresses.

– The user stack is defined. For systems where the RAM memory is shared between the
BSS and stack data, it is recommended to define the stack at the end of the memory
and let it grow to lower addresses. This allows runtime loading and activation of more
code modules, provided that the necessary BSS memory is still available. The SSP and
USP registers are cleared.
Another strategy can be to allocate the supervisor stack and bss blocks at high adresses
and let the user stack grow to high addresses from the low ram addresses. The
important part of this recommendation is to let a central memory zone that can be
eaten from both ends, which is necessary to load and activate a new module at runtime
without a reboot or RAM defragmentation in systems where the RAM is shared between
BSS and stacks.

– if a kernel module is installed, it is executed in supervisor mode. It MUST returns or
nothing more will happen. This feature is enabled to setup the system before any
application is run. After that, if a default module is installed, it is executed in user mode.
If a kernel module was executed, but there is no default application, the system is put
into low power SLEEP mode, waiting for an interrupt.

– If there is no kernel module,
– if a default module is installed, the default module is executed in user mode. This

mode is easy to use for tests, but this means that the code will only be able to read
and write a serial port in polling mode, and that no interruptions will be installed nor
installable.
If there is no kernel module and no default application, the system stays in the
bootloader waiting for module load commands.

6 Exceptions
When special conditions are met, such as cpu /stack errors, an exception is generated.
If no kernel module is defined, the system reboots.
Else, the exported function for the exception is searched. If no exported function exists, the
system reboots.
If an exception function is found, supervisor mode is entered, then the function is executed.
TODO: stack frame?
Trap vectors are user-triggered exceptions, that can be used to enter supervisor mode from
user mode under software control.

8

Entry point Kernel exported function number
Division by zero 0x40
Invalid opcode 0x41
Address error (tried to jump in the wild or read
non existent data)

0x42

System abort 0x43
Stack fault (over, under, access) 0x44
Module not found 0x45
RFU 0x46 – 0x4F
Trap #0 – #16 0x50 – 0x5F
High priority Interrupt 0x60
Low priority interrupt 0x61

7 General purpose registers
The machine has 8 registers named R0-R7, each one is 8 bits wide.
When the D bit of an instruction is set, the operation operates on register pairs. In this case the
least significant bit of the register number is set to zero and the operation uses registers N and
N+1 (modulo 8) to perform the operation. N has to be even.

R0 R1 R2 R3 R4 R5 R6 R7
W0 W2 W4 W6

8 Special registers
The machine has special registers, usable only in bitwise , MOVE and LOAD/STORE instructions.

Register Numeric
encoding

Size in bits Description

PC 0 0 0 16 Instruction pointer
SP 0 0 1 16 Current stack pointer. In supervisor mode, this is the

Supervisor stack pointer. In user mode it is an alias for
USP.

USP 0 1 0 16 User mode stack pointer, only available from the
supervisor mode. Any attempt to use this register in
user mode will trigger a 'System abort' exception.

FP 0 1 1 16 Frame pointer or generic 16 bits pointer if not used
AS 1 0 0 8 ALU Status register, 8 bits, holds arithmetic and logic

CPU state bits. Available in all modes.
PS 1 0 1 8 Processor Status register, 8 bits, holds system CPU

state bits. Only available in supervisor mode.
CM 1 1 0 8 Current module (read only). Used to compute the real

instruction address in conjuction with module table and
PC.

IC 1 1 1 16 Interrupt code. Number of the currently triggered
interrupt. Values are declared in IO registers.

ALU Status register bits:

9

B0 Z Last result was zero
B1 C Last result produced a carry
B2 N Last result was negative
B3 V Last result overflowed
B4 0

Always read as zero, writes
discarded

B5 0
B6 0
B7 0

Processor Status bits:

B0 M Processor mode
(0=user, 1=supervisor)

B1 T Trace/ Single step enable
B2 I Global Interrupt enable

B3 B Endianness control (0=BE,
1=LE)

B4 SM Autostack mode enable
(0=disabled, 1=enabled)

B5 0
Always read as zero, writes

discardedB6 0
B7 0

The processor status bits cannot be read nor written in user mode. They have to be changed by
the kernel module. When no kernel module is loaded, the default values for these parameters
are 0x00:

– user mode
– no trace
– no interrupts
– big endian (to be discussed)
– auto stack disabled

TODO: discuss merging AS and PS in a single 16-bit register to save a special register address.
In that case the PS part will always read all zeros in user mode.

9 Stack
The stack registers have 16 bits, but the available memory can be bigger than that. The real
stack address is computed using an internal “top of stack” register that is big enough to target
the full address space, to which the user available stack pointer is added. This allows a full 16-
bit stack to be used.
The top of stack pointers are saved by the VM but are not available to the user. Instead, the SP
and USP registers are zero based, and the real memory is accessed by adding/substracting the
contents of the current SP register to/from the real stack base address. In the same time, stack
over/underflows are checked and reported.
When the SM bit in the Processor Status Register is set, and not using an index, any STORE
instruction requesting write access from the SP address will postincrement the SP register,
effectively executing a “PUSH”. When another register is used, or when SP is used with an
index, or when the SM bit is not set, the register used to read memory will not be altered.

10

In a symmetric way, any non-indexed LOAD access using the SP register will predecrement the
SP register, effectively executing a “POP”.
In this mode, loading or storing a byte register will change the SP value by one, but if the W bit
of the load/store instruction is set, then SP will be changed by two.
TODO define what to do in kernel mode and accessing memory at USP.

10 IO space
The IO memory is a virtual memory zone (not backed by any actual memory except for the
descriptors) used to abstract the I/O peripherals. This space starts with IO descriptors, followed
by memory mapped registers, which use are defined by the descriptors.
At the beginning of the IO space, a number of read-only IO descriptors are stored. A descriptor
is TLV coded, or Tag Length Value. The tag indicates the peripheral type, the length indicates
the descriptor length, and value describes the peripheral registers and parameters. This
encoding allows fast peripheral enumeration and hardware independent access.
These tags are registered:

Tag Length Value
0x00 0 End of list. This is the last tag of the list.
0x01 4+... Serial port. Tag contents is encoded like this:

- 2 bytes: I/O port address base
- 1 byte: interrupt code
- 1 byte: flags (interrupt priority, serial ports options, TBD later)
- N bytes and format not defined yet: baud rate (should allow for
nonstandard baud rates)

11 Instructions encoding
Instructions are 1-4 bytes wide.

RD = destination register
RS = source register
MD, MS = register access mode. 0= GP register, 1=special register
S, SD, SS = double register access. 0=use 8-bit registers, 1=use RN and RN+1 as a 16-bit
register
Y = carry/borrow (for add, sub, rot, shift). 0=do not use carry/borrow, 1=use carry/borrow
LR = left (0) or right (1) for shift and rotate.
Ind = use 8-bit signed index constant (in following byte)
C = index length 0=8 bits index, 1=16 bits index
W=wide access: read/write 16 bits at once with load/store, use a 16-bit constant in load/store,
a 16 bits displacement in Bcc, wide multiplication/division result
C = Litteral Constant
Cc = condition code
D = Displacement, 8 bits signed (or 16 bits signed if W=1)
L=Link. 0=Just goto, 1=Push return address before jump
Dir = direction, 0=load/in 1=store/out

load RA, ind(RB) means mem[RB+ind] → RA

11

Condition codes:

0 0 0 always
0 0 1 Z (EQ)
0 1 0 NZ (NE)
0 1 1 GT
1 0 0 LT
1 0 1 GE
1 1 0 LE
1 1 1 None (RFU)

TODO:
– a TEST_AND_SET opcode may be desirable for multithread operations. But there is no

shared memory yet.

12

First byte (@N) Second byte (@N+1)
Description Data

B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 0 0 0 0 0 N/A NOP --
0 0 0 0 0 0 0 1 N/A RET --
0 0 0 0 0 0 1 0 N/A RETI --
0 0 0 0 0 0 1 1 N/A RETL --
0 0 0 0 1 RD 0 0 S MD MS RS MOV --
0 0 0 0 1 RD 0 1 S MD MS RS XOR --
0 0 0 0 1 RD 1 0 S MD MS RS AND --
0 0 0 0 1 RD 1 1 S MD MS RS OR --
0 0 0 1 0 RD Y 0 S 0 0 RS ADD(C) --
0 0 0 1 0 RD Y 1 S 0 0 RS SUB(B) --
0 0 0 1 1 RD 0 0 S 0 0 RS TEST --
0 0 0 1 1 RD 0 1 S 0 0 RS SWAP --
0 0 0 1 1 RD 1 0 SD W SS RS MUL --
0 0 0 1 1 RD 1 1 SD W SS RS DIV --
0 0 1 0 0 RD Y 0 SD LR SS RS SHIFT --
0 0 1 0 0 RD Y 1 SD LR SS RS ROT --
0 0 1 0 1 RD Y 0 SD LR Bits SHIFTC --
0 0 1 0 1 RD Y 1 SD LR Bits ROTC --
0 0 1 1 0 RD 0 0 SD MD 0 Rn CLRB --
0 0 1 1 0 RD 0 1 SD MD Bits CLRBC --
0 0 1 1 0 RD 1 0 SD MD 0 Rn SETB --
0 0 1 1 0 RD 1 1 SD MD Bits SETBC --
0 0 1 1 1 RD 0 0 0 MD 0 Rn TESTB --
0 0 1 1 1 RD 0 1 0 MD Bits TESTBC --
0 0 1 1 1 0 0 0 1 0 0 0 0 RD SEXT --
0 0 1 1 1 0 0 0 1 0 S 0 1 RD CMPL --
0 0 1 1 1 0 0 0 1 0 S 1 0 RD JSR --
0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 RESET --
0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 SLEEP --
0 0 1 1 1 0 0 0 1 1 0 1 Num TRAP --
0 1 0 0 0 0 0 0 Val S RD ADDQ --
0 1 0 0 0 0 0 1 Val S RD SUBQ --
0 1 0 0 0 0 1 0 Val S RD MULQ
0 1 0 0 0 0 1 1 ImpTableIndex LIBCALLX FuncNo
0 1 0 0 0 1 FnHi FuncNoLo ImpTableindex LIBCALL --
0 1 1 Ind W RV C Dir SM MV MM RM LOAD/STORE (Index)
1 0 0 Ind W RV C Dir SM MV MM RM IOCTL (index)
1 0 1 MD W RD C-LSB MOVC C-MSB
1 1 0 MD W RD C-LSB TESTC C-MSB
1 1 1 L W Cc D-LSB Bcc D-MSB

13

4 Instructions description
The global syntax is : OPERAND DESTINATION, SOURCE

[A] expresses an option.
For example ADD[C] means either ADD or ADDC.

[A|B] expresses an alternative choice, either A or B.
for example, LOAD [RV|WV], … means
either LOAD RV, …
or LOAD WV, ...

Status flags have the following meaning:
Z (zero) is set when the result of an operation is zero
N (negative) is set when the higest bit of the result is set
C (carry) is set when adding two operands that do not fit within the same number of bits of this
operand
V (overflow) is set when operands have the same sign, and the result have a different sign
TODO move this § elsewhere

14

ADD, ADDC
Assembly syntax
ADD RD, RS
ADD WD, WS
ADDC RD, RS
ADDC WD, WS

Effect
Add 2 registers, optionally including the carry

Y=0: RS + RD → RD
Y=1: RS + RD + C → RD

Then,
If RD=0, set Z
(TODO trouver les équations des autres flags)

Affected flags:
Z C N V

Encoding
Byte 1

B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 1 0 RD

Byte 2
B7 B6 B5 B4 B3 B2 B1 B0
Y 0 S 0 0 RS

RD: destination register number
RS: source register number

Y: use carry in operation
Y=0: do not use carry, operation is ADD
Y=1: use carry, operation is ADDC

S: operation size
S=0: 8-bit operation
S=1: 16-bit operation

15

ADDQ
Assembly syntax
ADDQ RN, #value
ADDQ WN, #value

Effect
Add a small positive value (1..16) to a general purpose register.

S=0: RN + value → RN
S=1: WN + value → WN
Update flags according to result

Affected flags
Z N C V

Encoding
Byte 1

B7 B6 B5 B4 B3 B2 B1 B0
0 1 0 0 0 0 0 0

Byte 2
B7 B6 B5 B4 B3 B2 B1 B0

VALUE CODE S RD

RD: destination register number

S: size of operation,
S=0 : 8-bit operation
S=1: 16-bit operation

VALUE CODE: This field encodes the value to be added, minus one. Since adding zero has no
sense, this encoding allows easy addition of values in range 1..16

16

AND
Assembly syntax
AND RD, RS
AND WD, WS

Effect
RS AND RD → RD

17

Bcc
Assembly syntax
BRA[L] offset
BEQ[L] offset
BNE[L] offset
BGT[L] offset
BGE[L] offset
BLT[L] offset
BLE[L] offset

Effect
Branch (and link) if condition is verified. This is a relative jump. For absolute jumps within a
module, use JSR.
The offset can be 8 or 16 bits. The value can be auto calculated, or hardcoded using a .L or .S
to the opcode. Using Bcc.S will fail if the required offset does not fit within 8 bits.

18

CLRB,CLRBC
Assembly syntax
CLRB [RD|WD], RB
CLRBC [RD|WD], #val4

Effect
Clear a bit. Bit index in register or in constant.

19

CMPL
Assembly syntax
CMPL RD
CMPL WD

Effect
Compute two's complement.

SD=0: (RD XOR 0xFF) +1 → RD
SD=1: (WD XOR 0xFFFF) +1 → WD

20

DIV
Assembly syntax
DIV RD, RS

Effect
Divide registers

21

IOCTL
Assembly syntax
XXX

Effect
Access I/O memory

22

JSR
Assembly syntax
JSR Rn
JSR Wn

Effect
Jump to subroutine using a register. This stores the address just after this instruction on the
stack, then loads the contents of register RD or WD in PC.
There is no JMP instruction because this one is a simple alias to MOV PC, Wn

23

LIBCALL
Assembly syntax
LIBCALL index@libname

Effect
Call a function in another module via this module's import table. This compact version can be
used to access the first 64 functions of the first 16 imported libraries

24

LIBCALLX
Assembly syntax
LIBCALLX index@libname

Effect
Call a function in another module via this module's import table. This version is not restricted to
16 libs or 64 functions.

25

LOAD
Assembly syntax
LOAD [RV|WV], ([RM|WM])
LOAD [RV|WV], offset8([RM|WM])
LOAD [RV|WV], offset16([RM|WM])

Effect
Retrieve memory contents. Used for stack and pointer dereference. The indexed version is
useful for struct access.

26

MOV
Assembly Syntax
MOVE RD, RS

Effect
RS → RD
Copy the contents of a register to another register.

Affected flags
Z The copied register contained zeros
N
C
V

Encoding
Byte 1

B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 0 1 RD

Byte 2
B7 B6 B5 B4 B3 B2 B1 B0
0 0 SZ MD MS RS

RD: destination register number
RS: source register number
S: operation size.

S=0: operate on 8-bit registers
S=1: operate on 16-bit register pair

MD: dest register mode
MS:source register mode

Mx=0: Normal register set
Mx=1: Special register set

27

MOVC
Assembly syntax
MOVC RD, #value8
MOVC WD, #value16

Effect
Move a constant value in a register. There is no opcode to store a 8 bit constant in a 16-bit
register.

28

MUL
Assembly syntax
MUL DESTINATION, SOURCE

Effect
Perform 8x8 / 8x16 / 16x16 unsigned multiplication

RD * RS → RD
RD * RS → WD
RD * WS → RD
RD * WS → WD
WD * RS → RD
WD * RS → WD
WD * WS → RD
WD * WS → WD
Then, update flags

Affected flags:
Z C N V

Encoding
Byte 1

B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 1 1 RD

Byte 2
B7 B6 B5 B4 B3 B2 B1 B0
1 0 SD W SS RS

RD: destination register number
RS: source register number
SD : size of RD as a source operand
SS : size of RS
W : size of result

29

MULQ
Assembly syntax
MULQ RD, #val4

Effect
Multiply a register by a small integer in range 2..17
This instruction cannot be used to multiply by zero or one.

30

NOP
Assembly syntax
NOP

Effect

Assembly syntax NOP
Effect Performs no operation. The instruction

encoding matches the memory erased state.
Affected flags None
Instruction length 1 byte
Encoding Byte 1

0 0 0 0 0 0 0 0

31

OR
Assembly syntax
OR RD, RS
OR WD, WS

Effect
Same encoding as MOVE, except operation is
RS OR RD → RD

32

RESET
Assembly syntax
RESET

Effect
Cancel all execution and restart runtime environment

33

RET
Assembly syntax
RET

Effect
Normal return from subroutine

34

RETI
Assembly syntax
RETI

Effect
Return from subroutine, also restores the processor and ALU status registers and the current
module. Used to exit the supervisor mode.

35

RETL
Assembly syntax
RETL

Effect
Return from library call, also restores the current module. Used to return from a LIBCALL or
LIBCALLX

36

ROL, ROR, ROLC, RORC
Assembly syntax
ROT DESTINATION, SOURCE
ROTC DESTINATION, #val4

Effect
Rotate the contents of a register, optionally through carry. Number of places is in a register or
in a constant.

37

SETB,SETBC
Assembly syntax
SETB [RD|WD], RB
SETBC [RD|WD], #val4

Effect
Set a bit. Bit index in register or in constant.

38

SEXT
Assembly syntax
SEXT RD

Effect
Sign extend 8-bit register to 16-bit

RN[7]=0: 0x00 || RN → WN
RN[7]=1: 0xFF || RN → WN

39

SHIFTL, SHIFTR
SHIFTLC, SHIFTRC

Assembly syntax
SHIFTL DESTINATION, SOURCE
SHIFTR DESTINATION, SOURCE
SHIFTLC DESTINATION, #val4
SHIFTRC DESTINATION, #val4

Effect
Shift contents of a register, optionally through carry. Number of places is in a register or in a
constant.

40

SLEEP
Assembly syntax
SLEEP

Effect
Go into low power mode until an interrupt wakes the processor.

41

STORE
Assembly syntax
STORE [RV|WV], ([RM|WM])
STORE [RV|WV], offset8([RM|WM])
STORE [RV|WV], offset16([RM|WM])

Effect
Transfer the contents of a register into memory.

42

SUB, SUBB
Assembly syntax
SUB RD, RS
SUB WD, WS
SUBB RD, RS
SUBB WD, WS

Effect
Same encoding as MOVE, except operation is

Y=0: RS – RD → RD
Y=1: RS – RD – C → RD

Affected flags: Z C N V

43

SWAP
Assembly syntax
SWAP RD
SWAP WD

Effect
Same encoding as MOVE, except operation is

S=0: swap nibbles in 8-bit register RS and store in RD
S=1: swap contents of registers RS and RD

44

TEST
Assembly syntax
TEST RD, RS

Effect
Same encoding as MOVE, except operation is

Y=0: Compute RS – RD
Y=1: Compute RS – RD – C

Do not update RD
Update flags
Affected flags: Z C N V

45

TESTC
Assembly syntax
TEST RD, #value8
TEST WD, #value16

Effect
Test a register against a constant

46

TESTB,TESTBC
Assembly syntax
TESTB [RD|WD], RB
TESTBC [RD|WD], #val4

Effect
Test a bit. Bit index in register or in constant. Result in Zero, so that BNE/BEQ can be used to
jump. Just like AND, but can accept a constant and does not alter the tested register.

47

TRAP
Assembly syntax
TRAP #val4

Effect
Switch to supervisor mode while calling into the kernel.

48

XOR
Assembly syntax
XOR RD, RS

Effect
Same encoding as MOVE, except operation is
RS XOR RD → RD

49

5 Assembly syntax

1 Overview
The reference assembler is written in java. As of now there is no high-level language compiler.
It is believed that in the future, this assembler will be rewritten as a code generator backend
for LLVM, to benefit from the good compilation quality of the CLANG compiler.
The only problem is the harvard architecture, whether it's acceptable for clang it is not known
yet, neither is known how to declare exports and imports (__attribute__ ?). An SDCC backend is
an alternative, it already supports harvard architectures and builtins for specific opcodes.

2 Instructions
The syntax for each instruction is detailed in the instruction's descriptions.

3 Symbols
Valid symbols are matching the regex: [A-Za-z][A-Za-z0-9]*, maximum length is 64 bytes.
Symbols are either code addresses or data symbols.
Evm8 is a load store machine, a symbol is an address. Unlike with 68k , there is no “LEA”
instruction, because this is what movc does:

movc R0, label
does not mean: mem[label] → R0
but rather : label → R0
The 68k instruction move.b label, d0 requires 2 evm8 instructions:

movc R1, label ; label → R1
load R0, (R1) ; mem[R1] → R0
load R0, 3(R1) ; mem[R1+3] → R0

4 Directives
Directives are commands that do not lead directly to binary code, instead they change the
behaviour of the assembler.

.module Define executable module name. Only allowed once.

.equ SYM, VAL Define a constant SYM with value VAL.

.include ”path” Include an external file at this point

.xdef SYM Mark symbol SYM as being global (visible by other files)

.global SYM Alias for .xdef

.text [NAME] Following data and code will go in the (possibly named) code section

.rodata [NAME] Following data will go into the (possibly named) rodata section

.data [NAME] Following data will go into the (possibly named) initialized data section

.bss [NAME] Following data will go in the (possibly named) bss section

.db VAL [,VAL]+

.byte
Store a byte verbatim

.dw VAL[,VAL]+

.word
Store a word (2 bytes) verbatim

50

.dl VAL[,VAL]+

.long
Store a long word (4 bytes) verbatim

.ds VAL

.space
Store a number of zero bytes

.asciiz “VAL” Store a null terminated string

In the future we will also support .macro … .endmacro

5 Instructions
Source lines can be:
-empty lines
-comment lines, starting by any of: # ! ; @ //
-a directive
-an instruction
Directives and instructions starts with a space.
When a line does not start with a space, then all chars before the first space are taken as a
label. If a label ends with : then this : char is discarded.

51

6 Relocatable format

1 Relocation types
The only instructions that can produce relocations are these:

0 1 0 0 0 0 1 1 ImpTableIndex LIBCALLX FuncNo
0 1 0 0 0 1 FnHi FuncNoLo ImpTableindex LIBCALL --
1 0 1 MD W RD C-LSB MOVC C-MSB
1 1 0 MD W RD C-LSB TESTC C-MSB
1 1 1 L W Cc D-LSB Bcc D-MSB

The relocation types are:
– Import library names: The linker maps them in the import table and affect a 8-bit

number to each entry. Type RELOC_IMPT8
– Same as before, but a 4-bit number. Type RELOC_IMPT4
– MOVC/TESTC constants can be symbols from any section, used for computed JSR and

JMP, and LOAD/STORE operations. These are absolute 16-bit addresses that points into
the current module's code segment. Type RELOC_ABS16. The RELOC_ABS8 type is also
defined and usable. In the future link-time optimisation will replace RELOC_ABS16 with
small values to RELOC_ABS8, but this requires recomputation of all subsequent
relocations so it will be done later.

– Bcc displacements. These are 16-bit offsets from the PC after the current instruction to
the target instruction. Only for TEXT symbols. Type RELOC_PC8

2 Format
A specific relocatable object format has been defined to allow linking of multiple object files in a
single binary program or library.,
Relocatable files format is as follows:

Offset Length Description
0 4 Magic « REL8 »

Flags
(optional) module name
Imported libs count

4 2 Exported symbols count
6 2 Relocation count

Partial import table
Symbol table
Relocation table
Relocatable code

A set of relocatable modules can be linked if only ONE of them has a module name indication.

52

7 Executable format
To allow efficient and modular execution, a specific executable format is defined.
There is no difference between libraries and programs. A library is a program with entry points,
whose only executable instruction is « RET ».
Note that this is just an interchange format. It may differ from what is really stored in the target
system's memory.

Offset Length Description
0 8 Module name: a 8 bytes identifier for the library or program,

preferably ASCII but not required.
8 2 RAM SIZE: the number of bytes that must be allocated for this

program for both BSS and initialized DATA.
10 2 Code size: the number of code bytes
12 1 Import table size: the number of imported libraries (n).
13 1 Export table size: the number of exported functions (p).
14 2 Reserved, must be 0x0000
16 8*n Names of imported libs: 8 bytes per name
16+8*n 2*p Exported PCs: 2 bytes per entry point
16+8*n+2*p C Executable code

53

8 References
Carry and Overflow http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Comb/overflow.html

Influences
68k user manual
javacard runtime environment

54

http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Comb/overflow.html

	1 Revisions
	2 Introduction
	3 System architecture
	1 Overview
	2 Modules
	Non volatile (NV) module registry
	Volatile module registry

	3 Execution context
	4 Memory
	Code memory
	Data memory

	5 Boot process
	6 Exceptions
	7 General purpose registers
	8 Special registers
	9 Stack
	10 IO space
	11 Instructions encoding

	4 Instructions description
	5 Assembly syntax
	1 Overview
	2 Instructions
	3 Symbols
	4 Directives
	5 Instructions

	6 Relocatable format
	1 Relocation types
	2 Format

	7 Executable format
	8 References

