
RxTx 2010 Rewrite

The Goal:

To provide a reference implementation of the javax.comm package using open source
code. The existing version 2.x source code will be completely re-written.

Design Objectives:

• Reference implementation – strictly adheres to the javax.comm API.

• Small footprint - Java and C code should strive to be as small as possible.

• Good performance – Java code should provide the shortest path possible to the
native code. Native code should provide the shortest path possible to the
underlying system.

• Fault tolerant - Java and C code should handle I/O errors gracefully, providing
good error recovery.

• Proven – Java unit tests should achieve 100% code coverage.

• Compatible – the rewrite should be a drop-in replacement for the javax.comm
library.

Architecture

The Java classes have very little included behavior. All I/O related methods are
delegated to native code. Java code is responsible for starting threads and thread
synchronization. In general, Java code is “in charge.”

Native code has very little included behavior, and it does not start any threads. Native
functions have only two results: success or exception thrown. Exceptions will be
propagated back to the Java code.

Java classes delegate calls to native code through the Dispatcher class. This is for
convenience – the Java->JNI->C connection is kept in a single place. The
Dispatcher class defines a contract between Java code and native code – both sides
must obey the contract for the library to operate correctly.

All of the native methods defined in the Java Dispatcher class are implemented in
native code in the Dispatcher.cpp file. The native Dispatcher code is responsible
for JNI data type marshalling/unmarshalling, argument validation, and exception
handling.

After incoming arguments are unmarshalled and validated, the function calls are
delegated to a set of C++ abstract classes. Various platforms implement the abstract
classes. In effect, conditional compilation is replaced by polymorphism. When the
function returns, Dispatcher.cpp marshalls the returned data and then returns
control to Java code. If the native function throws an exception, Dispatcher.cpp
catches the exception, converts it to a Java exception, and throws it back to Java code.

Project Layout

New folders have been created and source files have been reorganized.

The dist folder is the final target folder for distribution files.

The env folder contains subfolders for various development environments. In those
folders the development environments keep their make files, settings, intermediate files,
etc.

The lib folder is for third-party libraries – like Junit and Cobertura.

The src folder is the root folder for the source code.

The src/c/include folder contains platform-independent C code that is shared by all
platforms, and the other folders in C are for platform-specific code.

The main Java source code is in src/java/main and the Java unit test code is in
src/java/test.

Not pictured is the doc folder – which is created when the doc (JavaDoc) ant task is
run.

Code Style

In general, code is organized in a modular fashion and it uses object-oriented design
patterns. The source code is written in a way that is self-documenting - method and
function names describe what they do, and parameter and variable names describe
what they contain. There are very few explanatory comments in the code.

The source code does not contain debugging code. Debugging code should be
removed once the bug has been found and corrected.

Author and License

The rewrite was created by Adrian Crum and it is essentially a “clean room”
implementation. The package name, the constants, and the RXTX identifier were kept
from version 2.x - everything else is an original work or it was derived from readily
available code samples. In those places where new code looks similar to old code, it is
because both versions were derived from the same source.

The author would prefer to attribute authorship to the RXTX developer community rather
than to an individual, and the source code comments reflect that.

The original RXTX license has been preserved for legal reasons.

Rewrite versus Version 2.x

The rewrite does not contain RXTX-specific extensions to the original javax.comm API.
Those extensions are best left to application programmers, and the API provides a
means to implement those extensions outside of this library.

The rewrite creates a single native code library file instead of two. The native code
library file name is RXTXnative.*.

The rewrite should work in existing 2.x applications. Any differences encountered are
due to the rewrite's strict conformance to the original API – something 2.x didn't
achieve. In other words, if the rewrite does not work properly in an existing application, it
is because the previous RXTX version allowed the application to do something it wasn't
supposed to do.

Port discovery and enumeration have been pushed down to native code. It didn't make
sense to have platform-specific code in Java.

Implementing Native Code

Porting the rewrite to various platforms is pretty straightforward – simply implement two
C++ abstract classes and two C++ class functions.

Native code implementations must implement the abstract classes ParallelPort and
SerialPort.

Native code implementations must implement PortInfoList::getValidPorts()
and CommPortFactory::getInstance(const char *portName, int
portType).

Implementing Custom Port Types

Custom port types can be implemented in two ways: create a separate native code
library containing the custom port types and load it with a custom CommDriver
implementation, or add the custom port types to the RXTX native code.

An example of loading a custom CommDriver implementation can be found in the
CommDriver.java JavaDocs.

To add a custom port type to the RXTX native code, simply have it implement one of the
C++ abstract classes (ParallelPort or SerialPort), and then override
CommPortFactory::getInstance(const char *portName, int portType)
to return an instance of the custom port type. To include the custom port type in the port
enumeration logic, override the PortInfoList::getValidPorts() function.

	RxTx 2010 Rewrite

