Totl SudeP
4 1007

-~ JAGUAR

Technical Reference Manual

12 June, 1992

Flare Il Limited

The Business Centre
Station Road

Histon

Cambridge CB4 4LF

(0223) 236296
— (0223) 236659 fax

Jaguar Technical Reference Manual Page 2

1 Table of Contents

Table of Contents L2
Introduction S
Whatis Jaguar? 5

Jaguar Specification, 5

Jaguar video and object processor 7
OVBIVIEW . . L 7

Object Processor Performance 8
Memory controller 10
Microprocessor Interface 11

Digital Sound Processor (DSP) 12

Falcon mode L 12
Memory Map . . . 13

Object definitions 23
Description of Object Processor/Pixelpath 27
Refresh Mechanism 30

Colour Mapping 32
Introduction 32

The CRY Colour Scheme 32
Graphics Processor Subsystem L 38
Memory Map 40
Graphics Processor 41
: What is the Graphics Processor? 41
Programming the Graphics Processor 41

Design Philosophy 42
Pipe-Lining 42
Memory Interface L 45

Load and Store Operations 46
Arithmetic Functions 47
Interrupts e e e e e 47
Program Control Flow [P 49
Multiply and Accumulate Instructions 50
Systolic Matrix Multiplies 31
Register File 51
External CPU ACCESS 52
Instruction Set 52
Internal Registers L 61

Blitter . 65
What is the Blitter? 65
Programming the Blitter 66
Address Generation 67

Data Path 69

Bus Interface L 7
Register Description 73

Modes of Operation 80

©71992 Flare Il Limited 12 June, 1992

Jaguar Technical Reference Manual Page 4

©7992 Flare Il Limited 12 June, 1 99_2

JAGUAR 7R

Jaguar Technical Reference Manual Page 5

2 Introduction

This document is the Jaguar Technical Reference Manual - it is intended to be a definitive ,
reference work to the programmer's view of the Jaguar ASIC. It is neither a hardware
reference work nor a guide to a particular implementation of the Jaguar design.

This document is unfinished. Further explanation and examples will be added at a later date,
and many corrections will no doubt be necessary.

2.1 What is Jaguar?

Jaguar is a custom chip primarily intended to be the heart of a very high-performance games
/ leisure computer. It may also be used as a graphics accelerator in more complex systems,
and applied to work-station and business uses.

Jaguar contains three processing units. These are:
- Object Processor
The object processor is responsible for generating the display. For each display line

it processes a set of commands - the object list - and generates the display for that
line in an internal line buffer.

Objects may be bit maps in a range of display resolutions, they may be scaled,
conditional actions may be performed within the object list, and interrupts to the
Graphics Processor may be generated.

- Graphics Processor
The Graphics Processor is a very fast micro-processor which is optimised for
performing graphics generation. It has its own local RAM, and a powerful ALU
including fast multiply and divide operations.

- Blitter
The Blitter is closely coupled to the GPU, and is able to rapidly move and fill graphical
objects in memory. It includes hardware support for Z-buffering and shading at very

high speed.

Jaguar provides these blocks with a 64-bit data path to external memory devices, and is
capable of a peak transfer rate of 160 Mbytes / second into external dynamic RAM.,

©1992 Flare Il Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 6

2.2 Jaguar Specification

Key Features

* 40 MIPs Graphics Processor
* Blitter capable of drawing 1 Billion Pixels per second
* Pixel Clocks up to 40 MHz
* 24-bit true colour
* interlaced or non-interlaced displays
* Object list processor for display generatioh
* Windows with 1,2,4,8 & 16 bits per pixel on the same screen
* Hardware Gouraud shading and Z-buffering
* Ultra-fast shaded polygon drawing
* 16 or 32 bit microprocessors
_ . 8, 16, 32 or 64 bit memory interface
* Two banks of ROM, each up to 16 Mbyte
* Two banks of (page mode) DRAM, each up to 32 Mbyte
* Support for low cost highly integrated peripherals

System capable of de-compressing images in real time

* 720 pixel/line suited to broadcast quality digital TV

©71992 Flare {l Limited 12 June, 1992

JAGUAR <7/

Jaguar Technical Reference Manual Page 7

3 Jaguar video and object processor

e 3.1 Overview

The Jaguar video section has been designed to drive a PAL/NTSC TV. The display has a
horizontal resolution of 720 pixels and a vertical resolution of about 220 lines non-interlaced
or 440 lines interlaced. However by adopting a flexible approach to the design the chip can
be used with a range of display standards through VGA to Workstation. This will allow the chip
to become the backbone of many (possibly unforseen) products.

Two colour resolutions are supporied, 24 bit RGB and our own standard 16 bit CRY {Cyan,
Red, Intensity). The 24 bit mode is useful for applications requiring true colour. The 16 bit
mode is designed for animation. [t consumes less memory, fits better into 64 bit memory, is
simpler to shade and is almost indistinguishable from 24 bit mode.

Jaguar decouples the pixel frequency from the system clock by using a line buffer. This means
that the system clock does not have to be related to the colour carrier frequency and may be
unaffected by gen-locking. There are actually two line buffers one is displayed while the other
is prepared by the object processor. Each line buffer is a 360 x 32 bit RAM which is cycled
at 40 MHz. The line buffer conlains physical pixels these may be either 16 bit CRY pixels or
24 bit RGB pixels. The line buffers may be swapped over at the start and in the middle of
display lines.

The 16 bit CRY pixels at the output of the line buffer are converted to 24 bit RGB pixels using
a combination of look-up tables and small multipliers. Eight bit resistor ladders with emitter
o followers will be used as video DACs.

The video timing is completely programable in units of the pixel clock. The pixel ¢lock can be
up to 40 MHz although there is provision for use with an external multiplexer, For TV
applications the pixel clock will be in the range 12 to 15 MHz. The pixel clock will be
synthesised from the chroma carrier or from an external video source using a device like the
MC1378. Eight bits per pixe! at up 10 16Q MHz can be supported by using an externat
multiplexer, colour-look-up and DAC. :

Jaguar uses an object processor similar to PANTHER. Object processors combine the
advantages of frame store and sprite based architectures. Jaguar's object processor is simpler
yet more sophisticated than PANTHER. it shares some of the object types found on
PANTHER (scaled-bit-map, branch and interrupt) but it does not have the others (run_length,
move immediate, add immediate, move indirect and palette loads). Instead it can interrupt the
graphics processor to perform more complex operations on its behalf. The graphics processor
will support perspective, rotation, branches, palette loads, etc.

The object processor can write into the line buffer at up to 80 million pixels/sec. The source
data can be 1,2,4,8,16 or 24 bits per pixel. Except for 24 hits, objects of different colour
resolutions can be mixed. The low resolution objects, one to eight bits, use a palette to obtain
a 16 bit physical colour.

©1992 Flare I Limited 12 June, 1992

JAGUAR “7/™

Jaguar Technical Reference Manual Page 8

A sophistication in the object processor is that it can modify the existing contents of the line
buffer with another image. This could be used to produce shadows, mist or smoke, coloured
giass or say the effect of a room illuminated by flashlamp.

The object processor can also ignore data which is stored alongside pixel data. if, for instance,
a Z buffer is needed then this can be situated next to the pixels. This helps because DRAM
RAS pre-charges are needed less frequently.

3.2 Object Processor Performance

Each object is described by an object header which is two phrases for an unscaled object and
three phrases for a scaled object. When an image has been processed the modified header
is written back to memory.

The object processor fetches one phrase (64 bits) of video data at a time. This phrase is
expanded into pixels (and written into the line buffer) while the next phrase is fetched.

Image data consists of a whole number of phrases. The image data may need to be padded
with transparent pixels (colour zero in 1,2,4,8 & 16 bit modes).

The object processor writes into the line buffer at 40 MHz. In 24-bits-per-pixel mode and for
scaled objects one pixel is written per cycle. For unscaled objects with 16 or fewer bits-per-
pixel two pixels are written per cycle. Most objects will therefore be expanded at 80 million
pixels per second.

If the read-modify-write flag is set in the object header the object data is added to the previous
contents of the line buffer. In this case the data rate into the line buffer is halved.

This peak rate may be reduced if the memory bandwidth is not high enough. However if 64-bit
wide DRAM is installed then these data rates will be sustained for all modes.

When accessing successive locations in 64-bit wide DRAM the memory cycle time is 50 ns.
These are page mode cycles. When the DRAM row address must change there is an
overhead of between 125-225 ns (depending’on DRAM speed). These RAS cycles will occur
infrequently during object data fetches but will typically occur during the first data read after
reading the object header (because the header and image data wilt not normally be near each
other in memory). RAS cycles will alse occur after refresh cycles or if a bus master with a
higher priority steals some memory cycles in an area of memory with a different row address.
Refresh cycles will normally be postponed until object processing has completed.

To get an idea of how this could be used to support a window based operating system. | will
calculate roughly how many overlapping windows can exist on the same screen line. Assume
a screen with N identical overiapping 8 bit windows as shown:-

©1992 Flare Il Limited 12 June, 1992

JAGUAR “7*¢

Jaguar Technical Reference Manual Page 9

. ,]

As a rough approximation assume that only the first phrase of each underlying window is
shown and that the top window displays 720 pixels.

Each window has a two phrase object header which must be read and written back and will
probably incur a RAS cycles. Each of the underlying windows will take about 22 cycles to
process (2 read, 2 read, 7 RAS, 2 read, 7 RAS, 2 write). The uppermost window will take an
additional 360 cycles to generate 720 pixels.

If the object processor is active for the whole line (64 Os or 2560 cycles) then the number of
windows which can be displayed is:-

N = (2560 - 360) / 22

N=116

©1892 Flare Il Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manual Page 10

3.3 Memory controller

Jaguar's memory controlier is designed to be very fast and flexible. It is designed to hide the
memory width, speed and type from the other parts of the system.

Memory is grouped into banks which may be of different widths, speeds and types (although
both ROM banks have the same width and speed). Each bank is enabled by a chip select.
In the case of DRAM there are two chip selects RAS & CAS. Memory widths can be 8,16,32
or 64 bits wide but the memory controller makes it all look 64 bits wide.

There are eight write strobes one for each eight bits. There are three output enables
corresponding to d[0-15],d[16-31] and d[32-63]. Three memory types are supported DRAM,
SRAM and ROM,

ROM/EPROM wili be used for bootstrap and for cartridges. The ROM speed is programmable.
The memory controller allews the system to view ROM as 64 bits wide. Pull-up / pull-down
resistors determine the ROM width during reset.

DRAM is the principal memory type. It is cheap and fast (when used in fast page mode). In
fast page mode the DRAM is cycled at 20 MHz: this requires an 85 ns or 100 ns DRAM
depending on the manufacturer. The row time access is programmable. The column access
time is not programmable and can only be adjusted by changing the system clock. (A page
mode cycle takes two clock ticks). The memory controller decides on a cycle by cycle basis
whether the next cycle can be a fast page mode cycle. Data and algorithms should be
organised to minimise the number of page changes.

e Static RAM (SRAM) with speeds between 50 ns and 200 ns is also supported. SRAM might
be used in carlridges or as a way of accelerating the system.

There are five memory banks; two ROM, two DRAM and one SRAM.

©1992 Flare Il Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 11

3.4 Microprocessor Interface

JAGUAR has been designed to work with any 16 or 32 bit microprocessor with (up to) 32°
address lines. The interface is based on the 68030 but most microprocessors can be attached
by using a PAL to synthesize those control signals which differ. All peripherals are memory
mapped; there is no separate 1O space.

The width of the microprocessor is determined during reset by a pull-up / puli-down resistor.
Variations in the address of the cold boot codefvector is accommodated by making the
bootstrap ROM appear everywhere until the memory configuration is set up by the
microprocessor.

The microprocessor interface is generally asynchronous so the clock speeds of the
microprocessor and co-processors may be independent.

The DSP uses the same microprocessor interface.

The CPU normally has the lowest bus priority but under interrupt its priority is increased above
that of the graphics processor.

The following list gives the priorities of all bus masters.

Highest priority Higher priority daisy-chained bus master
Refresh
GPU / High priority DMA (un-buffered peripherals)
— . Object processor
DSP
CPU under interrupt
GPU
Blitter
Lowest priority CPU

The graphics processor (GPU) services a DMA request as an interrupt. The bus priority is
determined by the interrupt service routine.

©1892 Fiare I Limited 12 June, 1992

JAGUAR ™

Jaguar Technical Reference Manual Page 12

3.5 Digital Sound Processor (DSP)

" The DSP is a separate chip to the Jaguar video/system chip. This allows the DSP to be used .
in other products (possibly in a standalone synthesizer). '

The DSP design uses the same design and instructions as the core of the graphics processor.
The graphics specific parts of the graphics processor (the blitter and the systolic logic) are
discarded and replaced by sound specific logic (DACs and programmable interrupt timers).
The DSP has a bus interface which resembles the 68030 while the GPU uses an internal
synchronous 64 bit bus.

The DSP runs at up to 40 MIPs. This gives it the capability of synthesizing over 80 FM
operators or 64 amplitude & pitch modulated sampied voices.

Because ROM is at least seven times more area efficient than RAM on standard cell cost can
be saved by replacing RAM with ROM containing standard synthesis & maths subroutines.
If the DSP has a reasonable amount of ROM it should be possible for naive programmers to
treat the DSP as a 'black box' rather than a processor which has to be coded. This should do
a lot to overcome programmers reluctance to use the DSP.

Until these subroutines are developed the first version of the DSP will contain only RAM.

3.6 Falcon mode

In Falcon mode Jaguar has no external memory of its own. All external memory accesses are
controlled by an external memory controller and Jaguar must become bus master before it can
access the memory. The external bus is either 68030 or 68040 but Jaguar has access to the
fulf 64 bit memory data bus. The graphics processor ¢can execute programs out of its local
memory without becoming bus master. Jaguar's internal memory is available to the rest of the
system between addresses FFFEQOOO and FFFEFFFF.

In Falcon mode the Jaguar graphics processor is used to enhance the graphics capability of

the system. The Jaguar video generator and object processor are unused. In Falcon mode
the bus pricrities are as follows:-

Highest priority Higher priority daisy-chained bus masters
CPU under inferrupt
Graphics processor
Blitter
Lower priority daisy-chained bus masters
Lowest priority CPU

Jaguar's mode is determined by input pins.

©1992 Flare Hf Limited 12 June, 1962

JAGUAR -/

Jaguar Technical Reference Manual Page 13

3.7 Memory Map
Jaguar's memory map depends on how it is being used.
In Falcon mode the Jaguar responds to addresses between FFFEQ000 and FFFEFFFF.

In Jaguar mode the 128 Mbyte map is repeated 32 times throughout the 4 Ghbyte
microprocessor address space.

Foliowing reset the following 16 Mbyte window is repeated throughout the 128 Mbyte window
until memory is configured by the microprocessor. (This allows the system to boot whether the
microprocessor is a 680X0, an 80X86 or a Transputer) After configuration, this map
corresponds to the area defined as ROMO on the maps below.

00FFFFFF

Boctstrap ROM
00420000

Peripherals

GPIOO-7
00418000

External D3P
00410000

Internal
00400000

Bootstrap ROM
00000000

When the memory configuration is set one of two memory maps is selected depending on bit
ROMHI of the memory configuration register.

08000000 —

ROMO
07000000

ROM1
06000000

SRAMO
04000000

DRAM1 .
02000000

DRAMO
00000000

ROMHI = 1
08000000

DRAMO
06000000

DRAM1
04000000

SRAMO
02000000

ROM1
01000000 — ——

ROMO
00000000

ROMHT = O

ROMO is the bootstrap ROM but internal (ASIC) memory and peripherals occupy 128 Kbytes
of this space. ROM1 is the cartridge ROM. RAMO is the cartridge static RAM. DRAMO and
DRAM1 are the two banks of DRAM,

©@1992 Flare Il Limited 12 June, 1992

JAGUAR ™

Jaguar Technical Reference Manual Page 14

Internal Memory Map

- internal Memory is mostly 16 bits wide to allow operation with 16 bit microprocessors. The ‘
addresses shown are offsets relative to the 64K window occupied by internal memory. In
FALCON mode the addresses are relative to the 64K window FFFEQ0Q0 to FFFEFFFF,

32 bit write cycles are allowed to some areas of internal memory notably the line buffer and
the graphics processor memory. The line buffer support 32 bit writes primarily in order to
accelerate blitter writes to the line buffer. The graphics processor supports 32 bit writes to
accelerate program and data loads.

MEMCON1 First Memory Configuration Register Oh RW

Bit 0 ROMHI When set the two ROM decodes address the top 16M within
the 64M window. When clear the RCM decodes address the
bottom 16M.

Bits 1,2 ROMWIDTH Specifies the width of ROM
0 -> 8 bits, 1 -> 16 bits, 2-> 32 bits, 3 -> 64 bits

Bits 3,4 ROMSPEED Specifies the ROM cycle time
0->250ns,1->200ns, 2->150ns, 3-> 120 ns

Bits 5,6 DRAMSPEED Specifies the DRAM Speed. The page mode cycle time is

always two clock cycles. These bits determine RAS related
timing as foliows: ‘
Bils 5.6 Precharge RAS to CAS Refresh
0 4 3 5
1 4 3 4
2 3 2 4
~— . 3 2 1 3

The times are clock cycles (nominal 40 MHz).

Bits 7,8 SRAMWIDTH Specifies the static RAM Width
0 -> 8 bits, 1 -> 16 bits, 2-> 32 bits, 3 -> 64 bits

Bits 9,10 SRAMSPEED Specifies the static RAM speed
Q->200ns,1->150ns, 2 -> 100 ns, 3 -> 50 ns

Bits 11,12 IOSPEED Specifies the speed of external peripherals
0->450 s, 1 -> 250 ns, 2 -> 100 ns, 3 -> 50 ns

Bit 13 NCCPU Indicates that there is no microprocessor and that the graphics
processor should boot from ROM at address 0.

Bit 14 CPU32 Indicates that the microprocessor is 32 bits

Bit 15 FALCON Falcon mode.

All the ROMSPEED bits are set to zero on reset. ROMHI, ROMWIDTH, CPU32, NOCPU &
FALCON are determined by external pull-up / pull-down resistors. All the other bits are
undefined. ROMO repeats every 16 Mbytes until this register is written to.

©71992 Flare Il Limited 12 June, 1992

JAGUAR “7*

Jaguar Technical Reference Manual Page 15

MEMCON2 Second Memory Configuration Register 2h RW
e Bits 0,1 COLSsO0 Specifies number of columns in DRAMO

0 -» 256, 1 -> 512, 2-> 1024, 3-> 2048

Bits 2,3 DWIDTHC Specifies the width of DRAMO
0 -> 8 bits, 1 -> 16 bits, 2-> 32 bits, 3 -> 64

Bits 4,5 COLS1 Specifies number of columns in DRAM1
0 -> 256, 1 -> 512, 2-> 1024, 3-> 2048

Bits 6,7 DWIDTH1 Specifies the width of DRAM1
0 -> 8 bits, 1 -> 16 bits, 2-> 32 bits, 3 -> 64

Bits 8-11 REFRATE Specifies the refresh rate. DRAM rows are refreshed at a

frequency of CLK / (64 x (REFRATE+1)). Many DRAM chips
require a refresh frequency of 64 KHz. Refresh cycles occur
at the end of object processing. If REFRATE is zero refresh
is disabled.

Bit 12 BIGEND Specifies that big-endian addressing should be used. This
determines the address of a byte within a phrase and allows
JAGUAR to be used comfortably with Big-endian (Motorola)
processors or with Little-endian {Intel) processors.

Bit 13 HILO Specifies thatimage data should be displayed from high order
bits to low order.

All the above bits are undefined on reset except BIGEND which is determined by external pull-
up / pull-down resistors.

HC Heorizontal Count 4h RW

_ This register comprises of a ten bit counter which counts from zero up to the value in the
horizontal period register twice per video line. An eleventh bit determines which half of the
display is being generated. The counter is incremented by the pixel clock. The vertical counter
is incremented every half line in order to support interlaced displays. This register is only for
ASIC test purposes.

vC Vertical Count 6h RW

This register comprises of an eleven bit counter which counts from zero up to the value in the
vertical period register once per field. A twelfth bit determines which field (odd/even) is being
generated. The counter is incremented every half line. This register can be read to do beam
synchronous operations. It is only writable for ASIC test purposes.

LPH Horizontal Light-pen 8h RO

This read only eleven bit register gives the horizontal position in pixels of the light-pen.

LPV Vertical Light-pen O0Ah RO

The low eleven bits of this register gives the vertical position of the light-pen in half lines. The

most significant bit is cleared at the end of vertical sync and set when a pulse is received on
the light-pen input.

©71982 Flare Il Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual Page 16

CLK1 System Clock Frequency 0Ch WO

This ten bit register programmes a divider which may be used to synthesize the system clock.
An external phase comparator is connected to the output of the divider and also to 1/64 of the *
chroma crystal frequency. The output of the phase comparator drives a VCO which generates
the system clock. The above phase-locked-loop (PLL) synthesizes a system clock with a
frequency given by (N+1)*CHROMA/64 where N is the value written into CLK1 and CHROMA
is the crystal frequency. The value of this register is forced to one on reset.

e

CLK2 Video Clock Frequency OEh RW

This register is similar to CLK1 except that it defines the pixel clock and that it is not defined
on reset.

0OB[0-3) Object Code 1Ch-16h RO

These four registers allow the graphics processorl to read the current object. This allows the
graphics processor object to pass parameters to the GPU interrupt service routine.

OLP1 Object List Pointer (less significant word) 20h WO
OLP2 Object List Pointer (more significant word) 22h WO

This points to the start of the object list. All objects must be on a phrase boundary so the
bottom three bits are always zero. When one object links to another bits 3 to 22 of this
address are replaced by the LINK data in the object.

- oDP Object processor data pointer 24h WO
The top nine bits of this register form the 1op nine bits of object data addresses ie Al23-31].

Within an object image data is specified by the 20 bit DATA field. This specifies bits 3 to 22
of the address. Image data must lie on a phrase boundary so the bottom three bits are zero.

OBF Object processor flag \ 26h woO
Bit zero of this register can be tested by the object processor branch instruction. If set the

branch is taken, if clear execution continues with the next object. This flag is intended as a
mechanism for letting the graphics processor control the object processor program flow.

VMODE Video Mode 28h WO
Bit 0 VIDEN When set enables time-base generator.
Bits 1,2 MODE Determines how the line buffer contents are translated into
physical pixels.
0 16 bit CRY. Each 32 bit entry in the line buffer is treated as

two 16 bit CRY pixels on successive clock cycles, Each is
converted into eight bits of red, green & blue using a
combination of lookup tables and multipliers.

©171992 Flare Il Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Maniial Page 17

1 24 bit RGB. Each 32 bif entry in the line buffer is treated as
one physical pixel with eight bits of red, eight bits of blue,

‘ eight bits of green and eight bits unused.

e 2 16 bit direct. Each 32 bit entry in the line buffer is divided into ;
two 16 bit words which are output directly onto the red and
green outputs on alternate phases of the video clock. This
mode is for applications requiring a dot clock in excess of 40
MHz. Itis assumed that further multiplexing and colour lookup
will occur outside the chip. In this mode blanking and
video_active are output on the two least significant bits of
blue.

3 16 bit RGB. Each 32 hit entry in the line buffer is treated as
two 16 bit RGB pixels. Bits {0-5] are green, bits [6-10] are blue
and bits [11-135] are red,

Bit 3 GENLOCK When set this bit enables digital genlocking, This means that
external syncs will reset the internal time-base generators. On
its own this mechanism does not give satisfactory genlocking
because there is a one pixel jitter. However this mechanism
is used to quickly lock onto a new video source. An external
Phase Locked Loop is required for true genlocking.

Bit 4 iINCEN Enables encrustation. When set the least significant bit of the
CRY intensity is used to switch between local and external
video sources using an external videc multiplexer. This allows
the video source to be switched on a pixel by pixel basis.

Bit 5 BINC Selects the local border colour if encrustation is enabled.
Bit & CSYNC Enables composite sync on the vertical sync output.
Bit 7 BGEN Clears the line buffer to the colour in the background register

after displaying the contents. This only has effect in CRY and
RGB16 modes.

Bit 8 VARMOD Enables variable colour resolution mode. When this bit is set
the least significant bit of each word in the line buffer is used
to determine the colour coding scheme of the other 15 bits, If
the bit is clear the bits the word is treated as a CRY pixel. If
the bit is set then bits [1-5] are green, bits [6-10] are blue and
bits [11-15] are red. This mechanism allows JAGUAR to
support an RGB window against a CRY background for

instance.
Bits 9-15 Unused Write zeroes.
BORD1 Border Colour (Red & Green) 2Ah WO
BORD2 Border Colour (Blue) 2Ch woO

These registers determine the physical border colour. There are eight bits per primary colour,
Red is the less significant byte of BORDA. This colour is displayed between the active portions
of the screen and blanking. It is not necessary to display a border. The border area is defined
by the video time-base registers.

HP Horizontal Period 2Eh WO

This ten bit register determines the period of half a display line in pixels. The period is one tick
longer than the value written into this register.

©1992 Flare If Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 18

HBB Horizontal Blanking Begin 30h WO

This eleven bit register determines the start position of horizontal blanking. The most
significant bit is usually set because blanking starts in the second half of the line. '

HBE Horizontal Blanking End 32h WO

This eleven bit register determines the end position of horizontal blanking. The most significant
bit is usually clear because blanking ends in the first half of the line.

HS Horizontal Sync 34h WO

This eleven bit register determines the width of the horizontal sync and equalization pulses.
The pulses start when the horizontal count equals the value in the register. The pulses end
when the horizontal count equals the horizontal period. The most significant bit is usually set
because horizontal sync happens at the end of the line. The most significant bit is ignored in
the generation of equalization pulses which are the same width as horizontal sync but which
appear twice per line (for 10 half lines during field blanking).

HVS Horizontal Vertical Sync 36h wo

This ten bit register determines the end position of the vertical sync pulses. Vertical Sync
consists of long sync pulses for several half lines. These pulses are generated twice per line.
Vertical sync starts at the same time as the horizontal sync or equalization pulses but end
when the least significant ten bits of the horizontal count match the HVS register.

~— HDB1 Horizontal Display Begin 1 38h WO
HDB2 Horizontal Display Begin 2 3Ah WO

These eleven bit registers control where on the display line the object processor starts. When
the horizontal count matches either of the above registers the object processor starls
execution at the address in OLP, the line buffers swap over and pixels are shifted out of the
line buffer. The object processor can run twice per fine in order to support display modes
where the amount of data on a display line is greater than can be contained in one line buffer.
The line buffers are each 360 words x 32 bits. If the display mode was 720 x 24 bits per pixel
then line buffer A might be displayed at the start of the line while buffer B was being written.
Then during the second half of the display line buffer B would be displayed while line buffer
A was prepared for the next line. In this case HDB1 would contain a value cerresponding to
the left hand edge of the display and HDB2 would contain a value corresponding to the middle
of the display. If the object processor needs to run only once per line then either the registers
take the same value or one register is given a value greater than the line length.

HDE Horizontal Display End 3Ch WO

This eleven bit register specifies when the display ends. Either border colour or black (if HBB
< HDE) is displayed after the horizontal count matches this register.

©@1992 Flare If Limited 12 June, 1982

JAGUAR 7™

Jaguar Technical Reference Manual Page 19

The relative positions of some of the above signals and the registers which define them are
shown on the following diagram.

~— e T — display line -=--—-——-—--o--- >
/nsyne |hs |np s fmp
/eq s hegq hs |heq ﬂheq
T we [e ws e
hblank |nbe hbb —j
vactive |ndb1/hdr2 hdq)
!l example setup required
VP Vertical Period 3Eh WO
This eleven bit register determiries the number of half lines per field. The number is one more
than the value written into this register. If the number of half lines is odd then the display is
interlaced.
vBB Vertical Blanking Begin 40h WO
— This eleven bit register specifies the half line on which vertical blanking begins.
VBE Vertical Blanking End 42h WO
This eleven bit register specifies the half line on which vertical blanking ends.
Vs Vertical Sync 44h WO
This eleven bit register specifies the half line on which vertical sync begins. Vertical sync
pulses are generated from this line to the line specified by the vertical period.
vDB Vertical Display Begin 46h WO
This eleven bit register specifies the half line on which object processing begins. Object
processing restarts on every line until the half line specified by the VDE register. The border
colour (or black) is displayed outside these active lines.
VDE Vertical Display End 48h woO
This eleven bit register specifies the half line at which object processing ends.
VEB Vertical Equalization Begin 4Ah WO
©7992 Filare If Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manual Page 20

This eleven bit register specifies the half line on which equalization pulses start.

VEE Vertical Equalization End 4Ch WO
This eleven bit register specifies the half line on which equalization pulses end.

Vi Vertical Interrupt 4Eh WO
This eleven bit register specifies a half line on which the microprocessor is interrupted.
PIT[0-1] Programmable Interrupt Timer 50-52h WO

These two 16 bit registers control the frequency of interrupts to the CPU and to the GPU.
PIT[O} & PIT[1] operate as a pair controlling the interrupts.

The system clock (nominally 40MHz) is divided by (one plus the value in the first register). If
the first register contains zero the timer is disabled. The resulting frequency is divided by (one
plus the value in the second register) and the output of this divider generates the interrupt.

HEQ Horizontal equalization end 54h WO

This ten bit register determines the end position of the equalization pulses. Equalization
consists of short sync pulses for several half lines on either side of vertical sync. These pulses
are generated twice per line.

BG Background Colour 58h WO

This register specifies the CRY colour to which the line buffer is cleared.

INT1 Interrupt Control Register 0EOh RwW

This register enables, identifies and acknowledges interrupts from the six different interrupt
sources. The interrupts sources are as follows:

0 Video This interrupt is generated by the video time-base at field rate
on the display half-line specified in register VI. The interrupt is
generated at the right hand edge of the picture.

1 GPU This interrupt is generated by the graphics processor writing
to an internal register,

2 Object This interrupt is generated by stop objects.

3 Timer This interrupt is generated by the programmable timer.

4 DsP This interrupt is generated by an input to the JAGUAR chip

and is intended for use by the DSP. This is an active high
edge-triggered interrupt - the first interrupt wilt occur on the
first rising edge after it has been enabled.

5 External This interrupt is generated by an input to the JAGUAR chip
and is intended for future peripherals. This is an active high
interrupt, as the DSP interrupt.

©1992 Flare Il Limited 12 June, 1992

JAGUAR /¢

Jaguar Technical Reference Manual Page 21

Bits [0-3] enable the individual interrupt sources i.e. if bit 1 is set the graphics processor
interrupt is enabled. When read bits [0-5] indicate which interrupts are pending. i.e. if bit 5 is
set there is an external interrupt pending. Bits [8-13] clear pending interrupts from the
corresponding interrupt source. '

INT2 Interrupt resume register 0E2h WO

When an interrupt is applied to the CPU the bus priorities of the graphics processor and blitter
are reduced so that the CPU can service real time interrupts promptly. The bus priorities are
restored by writing to this register,

CLUT Colour Look-Up Table 400h-7FEh

The colour look-up table translates an eight bit colour index into a 16 bit CRY colour. The
eight bit index comes from the object data, which may be 1,2,4 or 8 bits. In order to achieve
a high throughput there are two tables allowing two pixels at a time to be written into the line
buffer. There are 256 16 bit entries in each table. Addresses in the range 400-5FE read from
table A. Addresses in the range 600-7FE read from table B. Writing to either address range
writes to both tables. Each 16 bit entry should be a CRY value with the intensity in the less
significant byte.

LBUF Line Buffer 800h-0D9EN
1000h-159Eh
1800h-1D9ERh

There are two line buffers each of which consists of a 360 x 32 bit RAM. Each 32 bit

e long-word can be read/written as two 16 bit words. In 16 bit CRY mode each word is a CRY
pixel; the less significant byte is the intensity. The word with the lowest address corresponds
to the left-most pixel. In 24 bit RGB mode each 32 bit long-word is a pixel. The less significant
byte of the word al the lower address is the red value. The more significant byte is the green
value and the less significant byte of the word at the high address is the blue value. The
fourth byte is unused.

The first address range addresses line buffer A. The second addresses line buffer B. The third
addresses the line buffer currently selected for writing. The first two address ranges are for
test purposes the third is for the graphics processor to assist the object processor in preparing
the line buffer.

By adding 8000h to the above address ranges 32 bit writes can be made to the line buffer.
This is mainly to accelerate the blitter.

Peripheral Memory Map

Peripherals occupy the 64k above the internal memory. All Peripheral Memory is 16 bits wide
although it is likely that many devices will have eight bit busses. Jaguar generates IORD or
IOWR for accesses to locations within this window These are required for PC peripherals. The
addresses shown are offsets relative to the 64k window.

©71992 Flare If Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 22

DSP Digital Sound Processor Oh-7FFEh

The breakdown of the DSP's memory has yet to be decided. A lot of space has been reserved
because the DSP RAM may be replaced by a lot of ROM.

GPIO[0-7] General purpose IO decodes 8000h - OFFFEh
Jaguar has eight outputs which decode 4k byte memory spaces in this range. These will be

used to control peripheral devices including joysticks, serial and paraliel |Q, floppy and hard
disks, SCS] etc.

©1982 Flare If Limited 12 June, 1992

JAGUAR “-7*

Jaguar Technical Reference Manual Page 23

3.8 Object definitions

There are five basic object types
Bit Mapped Object

This object displays an unscaled bit mapped object. The object should be on a 16 byte
boundary in 64 bit RAM,

First Phrase

Bits Field Description

{0-2] TYPE Bit mapped object is type zero

[3-13] YPOS This field gives the value in the vertical counter (in half lines)
for the first (top) line of the object. The vertical counter is
latched when the object processor starts so it has the same
value across the whole line. If the display is interlaced the
number is even for even lines and odd for odd fines. If the
display is non-interlaced the number is always even. The
object will be active while the vertical counter >= YPOS and
HEIGHT > 0. ’

[14-23] HEIGHT This field gives the number of data lines in the object. As each
iine is displayed the height is reduced by one for non-
interlaced displays or by two for interlaced displays. (The
height becomes zero if this would result in a negative value.)

— : The new value is written back to the object.

[24-43) LINK This defines the address of the next object. These 20 bits
replace bits 3 to 22 in the register OLP. This allows an object
to link to another object within the same 8Mbyles.

[44-63] DATA This defines where the pixel data can be found. Like LINK this
is a phrase address. These twenty bits define hits 3 to 22 of
the data address. Bits 23 to 31 are defined by register QDP.
This allows object data to be positioned anywhere within an 8
Mbyte window. After a line is displayed the new data address
is written back to the object.

Second Phrase

Bits Field Description

[0-11] XPOS This defines the X position of the first pixel to be plotted. This
12 bit field defines start positions in the range -2048 to +2047.
Address 0 refers to the left-most pixel in the line buffer.
[12-14] DEPTH This defines the number of bits per pixel as follows:
0 -> 1 bit/pixei
1 -> 2 bits/pixel
2 -> 4 bits/pixel
3 -> 8 bits/pixei
4 -> 16 bits/pixel

©7992 Flare lf Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual Page 24

5 -> 24 bits/pixel

[15-17] PiTCH This value defines how much data, embedded in the image
data, must be skipped. For instance two screens and their

~ common Z buffer could be arranged in memory in successive :

phrases (in order that access to the Z buffer does not cause
a page fault). The value 8 * SKIP is added to the data address
when a new phrase must be fetched. A pitch value of one is
used when the pixel data is contiguous - a value of zero will
cause the same phrase to be repeated,

[18-27] DWIDTH This is the data width in phrases. ie. Data for the next line of
pixels can be found at 8 * (DATA+DWIDTH)

[28-37] IWIDTH This is the image width in phrases (must be non zero).

[38-44] INDEX For images with 1 to 4 bits/pixel the top 7 to 4 bits of the
index provide the most significant bits of the palette address.

[45] REFLECT Flag to draw object from right to left.

[46] RMW Flag to add object to data in line buffer

[47] TRANS Fiag to make logical colour zero and reserved physical colours
transparent.

{48] RELEASE This bit forces the object processor to release the bus

between data fetches. This should typically be set for low
colour resolution objects because there is time for another bus
master to use the bus between data fetches. For high colour
resolution objects the bus should be held by the object
processor because there is very lttle time between- data
fetches and other bus masters would probably cause DRAM
page faults thereby slowing the system. External bus masters,
the refresh mechanism and graphics processor DMA
mechanism all have higher bus priorities and are unaffected
“ . by this bit.

[49-54] FIRSTPRIX This field identifies the first pixel to be displayed. This can be
used to clip an image. The significance of the bits depends on
the colour resolution of the object and whether the object is
scaled. The least significant bit is only significant for scaled
objects where the pixels are written into the line buffer one at
a time. The remaining bits define the first pair of pixels to be
displayed. In 1 bit per pixel mode all five bits are significant,
In 2 bits ber pixel mode only the top four bits are significant.
Writing zerces to this field displays the whole phrase.

[55-63] Unused write zeroes.

Scaled Bit Mapped Object
This object displays a scaled bit mapped object. The object should be on a 32 byte boundary
in 64 bit RAM. The first 128 bits are identical to the bit mapped object except that TYPE is

one. An exira phrase is appended to the object.

Bits Field Description

[0-7] HSCALE This eight bit field contains a three bit integer part and a five
bit fractional part. The number determines how many pixels
are written into the line buffer for each source pixel.

©71992 Flare Il Limited 12 June, 1992

JAGUAR -

Jaguar Technjcal Reference Manual Page 25

[8-15] VSCALE This eight bit field contains a three hit integer part and a five
bit fractional part. The number determines how many display
lines are drawn for each source line. This value equals

N HSCALE for an object to maintain its aspect ratio. :

[16-23] REMAINDER This eight bit field contains a three bit integer part and a five
bit fractional part. The number determines how many display
lines are left to be drawn from the current source line. After
each display line is drawn this value is decremented by one.
If it becomes negative then VSCALE is added to the
remainder until it bacomes positive. HEIGHT is decremented
every time VSCALE is added to the remainder. The new
REMAINDER is written back to the object.

[24-63] Unused write zeroes.

Graphics Processor Object

This object interrupts the graphics processor, which may act on behalf of the object processor.
The object processor resumes when the graphics processor writes to the object flag register.

Bits Fieid Description
[0-2] TYPE GPU object is type two
[3-13] YPOS This object is active when the vertical count matches YPOS

unless YPOS = 03FF in which case it is active for alt values
of vertical count.

{14-63] DATA These bits may be used by the GPU interrupt service routine,
They are memory mapped so the GPU can use them as data
or as a pointer to additional parameters.

-
Execution continues with the object in the next phrase. The GPU may set or clear the
{(memory mapped) object processor flag and this can be used to redirect the object processor
using the following object.

Branch Object
This object directs object processing either to the LINK address or to the object in the
following phrase.
Bits Field Description
[0-2] TYPE Branch object is type three
[3-13] YPOS This value may be used to determine whether the LINK
address is used,
[14-15] cC These bits specify what condition is used to determine
whether to branch as follows:
Q -> Branch if YPOS == VC or YPOS == 7FF
1 -> Branch if YPOS > VC
2 -> Branch if YPOS < VC
3 -= Branch if object processor flag is set
[16-23] unused
©1992 Flare If Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual Page 26

[24-43] LINK This defines the address of the next object if the branch is
taken. The address is defined as described for the bit mapped
‘ object.
e [44-63] unused

Stop Object

This object stops object processing and interrupts the host.

Bits Field Description
[0-2] TYPE Stop object is type four
[3-63] DATA These bits may be used by the CPU interrupt service routine.

They are memory mapped so the CPU can use them as data
or as a pointer to additional parameters.

©1992 Flare It Limited 12 June, 1392

JAGUAR ™R

Jaguar Technical Reference Manual

3.9 Description of Object Processor/Pixel path

The following two diagrams show where the object data path fits into the Jaguar Chip. A,
diagrams that follow are drastically simplified for clarity.

RGB syncs
o ' i
Object — Line Pixel Video
Processor |~ |(Buffer |~ |Generator Timing
External —— Processcr [Bus
Bus Bus
Interface
IQ Bus
Memory .
Control———Memory Blitter —=Graphics Misc
. Controller |Processor

...

Jaguar Chip Block Diagram

The processor bus is a 64 data, 32 address multi-master bus. The bus master can change
on a cycle by cycle basis with no overhead. The external CPU controls this bus when it is the
bus master. The 1O bus is a 16 data 16 address bus used for reading and writing to internal
memory and registers. The bus interface logic and memory controller allows transfers of any
width (one to eight bytes) to be made to any width of external memory. The bus interface
accommodates 16 and 32 bit microprocessors. The bus interface also generates a multiplexed
address for dynamic RAMs. The multiplexed address is a function of memeory width and
number of columns. The memory controller only performs RAS cycles when the row address
changes. This allows contiguous regions of memory to be accessed three times faster.

The line buffer is a bridge hetween two asynchronous parts of the chip. On one side are the
processors and memory. On the other side are the video timing and pixel generators. In fact
there are two line buffers. While one is writlen into by the object processor the other is read
by the pixel logic. Each line buffer is a small 360x32 RAM with independent write strobes for
the high and low words. ~

Each location in the line buffer ray contain one 24 bit pixel or two 16 bit pixels.

©18992 Flare Il Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 28

e SR
Controlling
State
Machine
Object Data
. - Path .
. Address Okject F—=Write back = To Line
. |Generator Register Logic Clut . Buffer
Address.=:::::J
Bus .
Data
Bus
""""""""" Object Processor Block Diagram
The object processor reads object headers and imége data and writes back modified headers.
The write back logic normally increases the data address by the data width. If the object is
scaled then the data address is increased by a multiple of the data width and the vertical
remainder is modified.
The object data contains either physical colours in the case of 16 and 24 bits-per-pixel objects
or logical colours in the case of 1,2,4 and 8 bits-per-pixel objects. Logical colours are
translated into physical colours by the colour ook up table or CLUT.
- Pr;cessér _J[:: Mux
Data Latch Multiplexers Clut F—Latch p==Line
Bus N T:# ra Buffer
- ; -
S Line
kounter} Buffer
] Address
"""""" Object Data Path o
The object processor fetches data one phrase at a time until the image data, for that header,
is exhausted or until the line buf‘er address (X coordinate) has become invalid. The behaviour
of the object data path depends on the colour resolution of the object {bits-per-pixel) and on
whether the object is scaled.
In 24 bits-per-pixel mode each phrase contains two pixels (16 bits unused per phrase), The
multiplexers select each in turn and one 24 bit pixel is wrilten into the line buffer per clock
cycle. The Clut is bypassed for 24 bits-per-pixel objects.
In 16 bits-per-pixel mode each phrase contains four pixels. The muitiplexers select two pixels
at a time and two pixels are writ:en into the line buffer each clock cycle. The Clut is bypassed
for 16 bits-per-pixel objecls.
-

©1982 Flare Il Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 29

In 1, 2, 4 and 8 bits-per-pixel modes each phrase contains 64, 32, 16 and 8 pixels
respectively. The multiplexers select two pixels at a time. In 1, 2 and 4 bit modes the pixel is
made up {o eight bits by taking the top bits from the top bits of the palette offset (a field in the
object header). The two eight bit values are used as addresses to a pair of identical Cluts *
yielding two sixteen bit physical pixels which are written into the fine buffer every cycle.

If an object is scaled the object processor deals with one pixet at a time not pairs. Scaling is
achieved by incrementing the line buffer address independently of the counter controlling the
multiplexer. For instance if the line buffer address is incremented twice as often as the counter
then the image will be twice as wide.

There are two line buffers A & B. While A is written by the object processor B is being read
by the pixel logic. At the start of the next display line the buffers swap over so A is displayed
and B is written. This swap is effectively achieved by multiplexers on all the signals attached
to the line buffers.

The above description is complicated by the following:

¥

If a pair of pixels must be written to an odd location in the line buffer they must be
swapped and one pixel celayed.

* The line buffer address clecrements if the object is reflected.
* The colour to be written into the line buffer can be added to the previous value instead.
One colour may be used as transparent and is not written into the line buffer.

The line buffers also appear as memory to the rest of the system.

The pixel data path is shown in the following diagram. All the logic in this box runs from a
different clock to the previous logic.

[' L)
Line -----‘ijatcl‘.. =e==2:1 == CRY to L'"—Mux RGEB
Buffer Mux RGB ‘ .
L Line
=== Buffer .
Address

Pixel Data Path
The operation of the pixel data rath depends on the video mode.

In 24 bits-per-pixel mode the line buffer is read at the video clock frequency. The line buffer
data is simply latched and presented at the pins as red, green and blue data bits.

©1992 Flare Il Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual Page 30

In CRY mode the line buffer is read at half the video clock frequency. Each read yields two
16 bit CRY values. These are multiplexed into the CRY to RGB conversion logic during
succeeding video clock cycles. In this logic the more significant eight bits specify the colour
and the less significant bits specify the intensity or brightness. The colour value is used as an '
index to three ROMs. These ROMSs contain the relative amounts of red, green and blue for
each colour. The outputs of the ROMs are multiplied by the brightness to get a final eight bits
of red, green and blue.

In RGB16 mode the line buffer is read at half the video clock frequency. Each read yields two
16 bit RGB values. Bits 0-5 form the six most significant bits of green, bits 6-10 form the five
most significant bits of blue and bits 11-15 form the five most significant bits of red. All other
bits are set to zero.

In all these modes a small amcunt of additional logic sets the output colour to black during
blanking and to the border colour where appropriate.

A fourth mode exists to allow the system to support very high pixel rates using external
multiplexers and DACs. This is called direct mode. In this mode the line buffer is read at the
video clock frequency and the 2:1 multiplexer is driven by the video clock directly. The output
of the 2:1 mux is connected directly to the red and green outputs of the chip. This allows 16
bit values to be output at twice the maximum video clock frequency. This provides a video
bandwidth of up 1o 160Mbytes per second. These values should be re-synchronised, . de-
multiplexed and converted to analogue outside the chip. In this mode the blanking and border
signals are output on the blue pins.

The above picture is slightly cornplicated by the following:

* The least significant bit in CRY and RGB16 modes can be sacrificed (treated as zero)
and used to control an external video switch through the incrust output pin.

In CRY and RGB16 modes a background colour may be written into the line buffer
after it has been read.

In CRY and RGB16 modes the least significant bit may be used to determine whether
the mode is CRY or RGE16. This could be used to drop a decompressed RGB picture
into a CRY picture without having to do a RGB to CRY conversion.

3.10 Refresh Mechanism

The average refresh frequency is defined by the REFRATE bits in the MEMCON?2 register.
Refresh cycles are grouped togzther in order to lessen the impact on system performance.
However they cannot performed in very targe numbers or they would create "dead spois” in
which no processing was possible. This could disrupt the display or sound production.

Jaguar uses a counter to accumulate a count of refresh cycles. When this counter reaches
eight then eight refresh cycles are done and the counter is set to zero,

©1992 Flare If Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manual Page 31

Refresh cycles are also invoked when the object processor reaches the end of the object list.
After the object processor executes a STOP object JAGUAR performs as many refresh cycles
as are necessary to decrement the refresh counter to zero.

This mechanism guarantees that the minimum refresh rate is maintained without interrupting
the object processor and without creating "dead spots" of more than a few microseconds.

©®1992 Flare Il Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 32

4 Colour Mapping

N 4 1 Introduction

Jaguar produces a video output using eight digital bits each for red, green and blue. This
allows each output to have two hundred and fifty-six intensity levels, and is encugh to allow
smooth shading from one colour to another. This twenty-four bit scheme is known as frue-
colour.

Jaguar can produce a display based on true colour pixels stored in memory in long words,
with eight bits unused, and this is known as true colour mode. However, these thirty-two bit
pixels are large and so consume a lot of memory; and they also consume a lot of memory
bandwidth to fetch from RAM for display.

True-colour mode is therefore unattractive for general use, as most images do not need its
range of colours, and it is desirable to avoid the detrimental effects it has on performance.
True colour mode is therefore a special case, and when it is used only true-colour images may
be displayed.

In normal operation, the Jaguar display system is based on sixteen-bit pixels. Images in
memory may be stored either as sixteen bit pixels, or may be stored as one, two, four or eight
bit fogical colours. These logical colours are used as indices into a Palette or Colour-Look-Up-
Table (CLUT), which contains their corresponding sixteen-bit physical colours.

Sixteen-bit pixels may stored as six bits of green, and five bits each for red and blue, but this
no longer allows smooth shading. There is therefore an additional scheme, known as the
CRY scheme (cyan, red and intensity, see below) which still allows smooth intensity shading.
This CRY scheme is now discussed in greater detail.

4.2 The CRY Colour Scheme

Gouraud Shading Requirements

The CRY scheme was derived principally to meet the requirements of Gouraud Shading. This
is a technique which models the: appearance of a lit curved surface from a set of polygons.
If the intensity due to a light source is calculated for each polygon and the polygon is painted
in that colour, then the polygons that make up that surface are each clearly visible.

The technique of Gouraud shading helps avoid this by calculating the intensity at each vertex,
and then linearly interpolating along each polygon edge, and hence along each scan line that
makes up the display. If only white light sources are considered, then the only variation is one
of luminous intensity, and not onz of colour. It is therefore attractive to have a colour scheme
which contains an intensity vector, as the Gouraud shading calculations have then only to be
performed for one value, rather than the three values that would have to be calculated ina
true colour scheme.

©1992 Flare Il Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 33

As there is general agreement that eight bits is enough to give smooth intensity shading (and
ft is a round number), it was therefore necessary to come up with a scheme which allowed
the colour to be expressed in eight bits.

Colour Space
The colour space to be modellad may be considered
as the RGB cube shown, where the lowest vertex
represents black, and the highest white. The three
edges running out from black are the three orthogonal
vectors red, green and blue. The sum of these three
vectors can describe any point in the cube. The three
lower vertices therefore represent fully saturated red,
green and blue, and the three higher ones yellow, cyan
and magenta.
This colour space model is only one of many wayé of
considering what the human brain 'sees’, but it has the Figqure 1 - RGB Cube
advantage of modeliing the display system used by
colour monitors, and of being mathematically simple.
Physical requirements
The intensity vector can be considered as that component of the sum of the red, green and
blue vectors which lies along the diagonal of the RGB cube from black to white. This is not
the "true’ intensity, which is a weighted sum of red, green, and blue; but it bears a linear
— relationship to it when the colour is not changed.
It is necessary to come up with a scheme to encode the colour value in the remaining eight
bits of the CRY pixel. The following requirements were made on this scheme:
1. All two hundred and fifty-six values should represent valid, and different, colours.
2. The colours should be well spread out across the colour space.
3. Colours should be able to be mixed by linearly averaging their colour values.
4, An intensity value of zero must be black.
As the remaining colour space without intensity is two-dimensional, two vectors are required
to represent a point in it. An s, {J scheme was discarded as it would not meet requirement
two, and so a scheme based on two x, y vectors was decided on.
To meet requirement one, the two vectors must describe a point on a square area. As no
existing colour space model is square when viewed along the intensity axis, it was necessary
to come up with a new one.
The approach decided on, after considerable experimentation, was to take the view along the
intensity axis of the RGB cube, which is a hexagon, and distort it into a square. This does
not quite meet requirement 3, but is close to it.
S

©1992 Flare Il Limited 12 June, 1992

JAGUAR <™

Jaguar Technical Reference Manual Page 34

CRY Colour Scheme

The colour mapping scheme chosen is based on defining 256 points on the upper surface of
the RGB cube.

In the figure shown, the hexagon GRE] ,

corresponds to a view looking down y‘_\ GREEN
onto the RGB cube. This hexagon is

distorted onto a square, whose X and YELLOW
Y co-ordinates are four-bit values.

This defines 256 colour levels. The

choice of green as the primary colour Y
which lies on the middle of one face t

was made after observing the effects g ‘X

of the three possible mappings, and BLUE RED
corresponds with the expected result, MAGENTA

as the human eye is least able to

distinguish shades of green. Figure 2 - RGB Mapping Scheme

Note that in each of the three areas defined on the hexagon and square, one of red, green
or blue is at full intensity, and the others vary. At the centre (white) they are all at full
intensity. The intensity scale for any given colour lies along the line between black, and the
point on the top surface of the cube defined in the colour table.

Colours may be averaged by taking the average of their eight-bit intensity value, and each of
the four-bit X and Y compenents of the colour value. This will not produce exactly the same
colour as the point midway between them in the RGB cube, but will be close to it.

This is a summary of the pros and cons of the CRY scheme:
Advantages of CRY

- Smooth intensity shading from 16-bit pixels
- Better matched to the capabilities of the human eye than 5:6:5 bit RGB schemes
- Suitable for efficient Gouraud shading

Disadvantages
- Steps are visible in smooth changes of saturation or hue

- Translation from RGB to CRY is not straightforward
- Non-standard

©1992 Flare ll Limited 12 June, 1992

JAGUAR “-/™

Jaguar Technical Reference Manual Page 35

Physical Implementation

N The eight-bit colour value is used to index a look-up table of modifier values for each of red
green and blue; which is multiplied by the intensity value to give the output leve! for each drive
to the display. The look-up tablzas are:

RED 0 0 0 ¢l 0 c 0 G G 0 0 0 0 0 0 a
34 34 34 34 34 34 34 34 34 34 34 34 34 34 19 0

68 68 68 €8 68 68 68 6B 68 68 68 &8 64 43 21 0

102 102 102 102 102 102 10z 102 10z 10z 10z 95 71 471 213 0

135 135 135 135 135 135 135 13% 13% 13% 130 104 I8 52 26 0

165 169 169 169 169 169 169 165 169 170 141 113 85 56 28 0

203 203 203 203 203 203 203 203 203 163 153 122 91 61 30 0

237 237 237 237 237 237 237 237 230 197 164 131 98 65 32 0

255 255 2%5 255 755 255 255 259 247 214 181 148 115 82 4% 17

255 255 255 255 ¥55 255 255 295 755 235 204 173 143 112 81 &1

255 255 255 255 255 255 255 2595 255 255 227 198 170 141 113 85

255 255 255 255 255 295 255 255 255 255 249 223 197 171 145 119

255 255 255 255 255 255 255 255 255 255 255 248 224 200 177 153

235 255 255 255 255 255 255 255 255 255 255 255 252 230 208 187

255 255 255 255 255 255 255 255 255 255 255 255 255 255 240 221

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

17 34 51 68 65 102 119 136 153 170 187 204 221 238 255
1% 38 57 77 96 115 134 154 173 192 211 231 250 255 255
21 43 64 86 107 129 150 172 193 215 236 255 255 255 255
23 47 71 85 11% 142 166 190 214 238 255 255 255 259 255
26 52 78 104 130 156 162 208 234 255 255 25% 255 259 255
28 56 85 113 141 170 198 226 255 255 255 255 255 2995 255
30 61 91 127 153 183 214 244 255 255 259% 255 255 25% 255
32 65 985 131 164 197 230 255 295 755 295 255 255 255 25%
32 65 98 131 164 197 230 25% 255 255 255 255 259 255 255
30 61 91 122 153 183 214 244 255 255 255 255 25% 255 255
28 56 85 113 141 170 198 226 255 259 255 255 295 255 255
26 52 7B 104 130 156 182 208 234 255 255 255 255 255 255
23 47 Tl 95 119 142 166 190 214 238 255 255 255 255 255
21 43 64 86 107 129 150 172 193 215 236 255 255 255 255
1% 38 57 77 96 115 134 154 173 192 211 231 250 255 255
17 34 51 68 65 102 115 136 153 170 187 204 221 238 255
BLUE 25% 255 255 255 255 255 255 255 255 255 255 25% 255 255 255 255

255 255 255 255 25% 255 255 25% 259 2955 259 25% 255 255 240 221

255 255 255 26% 255 255 255 29% 255 255 255 255 252 230 203 187

255 255 255 255 25% 755 255 255 255 295 25% 248 224 700 177 153

255 255 255 255 255 255 255 295 259 259% 249 223 197 171 14% 119

255 255 255 255 255 255 255 255 255 255 227 198 170 141 113 85

—— . 255 255 255 255 255 295 255 2%% 5% 235 204 173 143 112 g1 °1
255 255 255 255 255 255 259% 259 747 214 181 148 115 #z 4% 17

237 237 237 237 237 Z37 237 237 730 197 164 131 98 5 32 0

203 203 203 203 703 Z03 203 203 203 183 153 122 91 €1 30 0

16% 165% 169 169 169 169 169 169% 169 170 141 113 85 56 28 0

135 135 135 135 135 13% 13% 13% 135 135 130 104 78 5z Z2¢ 0

102 102 102 102 102 102 102 1062 102 102 102 95 71 471 23 0

0

"]

0

GREEN

COOOoOOCOOooOooOOO0

68 68 68 68 685 65 6B €8 £8 683 6B 6B 64 431 21
34 34 34 3¢ 34 34 34 34 34 34 34 34 34 3¢ 19
0 0 o] 0 0 0 0 o 0 o] 0 0 0 0 0

©1992 Flare i Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 36

The tables are generated by this C procedure:

S .
vold init_rgb_map (} N
!
int n,x,vy;
float xfit,yflt,sc,radius,alpha,beta;
for {(n=0; n<256; n++)

{
X = nfl6;
y = n%l6;
xflt = (float} {x-7.5)*(1.0/7.%);
yElt = (float} (y=7.5)*(1.0/7.5);
yElt = yflt * (1.0 - fabsi{xflt/2.0));
xflt = xflt * COS30;
/* determine whicli triart its in */
P ({xf1e<0.0}&& ((yELt<C.0) | {{yflt<-2FlL*TAN30))) /* triant A */
blue lookupin] = 265; .
green_lookup(n] = {float) 255.0 * ({1.0+yflt) + xElt*TAN3O);
red lookup[n] = (flcat) 255%.0 * (1.0+(xf1t/C0OS30));
}
else
{
16 ({xfle>0.0)aa ((yI1t<0.0) || (yE1t<xfIC+*TAN30))) /* triant C */
{
red loockup(n} = 20%;
green_lookup(n] = (float) 255.0 * {((1.0+yflt) - XEIt*TANZ0):
blue Iookup(n] = {(float} 255.0 * {1.0-{xflt/COS30});
H
else /* triant B */
{
radius = sqgrr (#flr*xflt + yflo*yfle);
. green lcookup{n] = 2535;
beta = atan (yilt/=xflt);
if (beta < 0.0} beta += PI;
alpha = beta - PI/6.1;
if (alpha < PI/2.0}
blue lookup{n) = (float) 255.5%{(float} 1.0 - {(flecat)
radius¥sin(alpha)*tan{PI/6.0) +. radius*cos{alphal)};
else
blue lcokup{n] = {float} 255.5%({flecat) 1.0 -
{{float) '
radius*sin(PI-alpha) *tan(PI/6.0) -
radius*cos (PI-alpha))};
alpha = 4.0*PI/6.0 - aloha;
if (alpha < PI/7.0)
red lookup{n} = “float) 255.5%*((float) 1.0 - ({float)
radius*sin{alpha)*tan(PI/6.0) + radius*cos(alpha)));
else
red lochkupin) = rfleoat} 255.5%((float) 1.0 -
{((float)
radius*sin{PI-alpha)*tan(PI/6.0) -
radins*cos(PI-alpha)));
1 }
}
H
This is provided for information only, and is not considered the best way to generate RGB to
CRY mapping, due to the amount of trigonometry. The best technique is to calculate the
intensity value, and from this the ideal ROM entries for that colour. This can then be matched
to the actual ROM tables to find the nearest maich.

©1992 Flare If Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 37

Note that the intensity value used here is the largest of red, green and blue. The C procedure
below shows this:

void disp lookup (r, g, b) .
unsigned char *r;
unsigned char *g:
unsigned char *b;

{

int x,y,n,nearest,ndist, tdist;
unsigned int intens,rt,gt,bt;
long m;

for (y=0; y<240; y++)
{

for (x=0; x<256; x++)
{
ndist = 1024;
if {*g > *r} intens = *g:
else intens = *r:
if (*b > intens) intens = *b;

if (intens > 0}
{
rt
gt
bt

H
else rt=gt=br=0;

{*r << B8) / intens:
{(*g << 8) / intens;
{*b << 8) / intens;

[

for (n=0; n<255; n++)
{
tdist = abs {red loo-up(n] =rt)
+ absz (green lookupin]-gt)
+ abs (blue lookupin] -bt);
if (tdistendisry —
{
ndist=tdizt;
nearest=n;
if (ndizt==0) break:
1
T ~ }
rt {intens * red_lookup[nearest])>>8;
bt {intens * blue lockup{nearest])>>8;
gt {intens *green_lockup{nearest])>>8;
if (rt<0) rt=0; if (rt>235) rt=255;
if (gt<Q) gr=0; if {gt>»255) gr=255;
if (bE<0} bt=0; if (bt>255) bt=255;
m = (65536L * bi)
+ {(256L * rt)
+ at;
plot {x,y,m};
r++; gt+; bt+;

1 } }

©1992 Flare I Limited 12 June, 1982

JAGUAR -7

Jaguar Technical Reference Manual Page 38

5 Graphics Processor Subsystem

N~ The Graphics Subsystem of Jaguar is a self-contained processing unit, whose view of the ;
external system processor and memory are controlled by a separate memory controller, which
is not part the graphics system.

The graphics subsystem transfers data to or from external memory by becoming the master
of the co-processor bus. This bus has a 64-hit (phrase) data path, and a 32-bit address, with
byte resolution. This bus has multiple masters, and ownership of it is gained by a bus
request/acknowledge system, which is prioritised, i.e. ownership can be lost during a request
{but not during a memory cycle). The graphics subsystem actually contains two bus masters,
the Graphics Processor and the Blitter.

The graphics subsystem also acts as a slave on the 1O bus. This bus normally has a 16-bit
data path, and allows external processors to access memory and registers within the graphics
subsystem. As the data path within the graphics subsystem is 32-bit, all reads and writes
must be in pairs.

The memory within the Graphics Subsystem appears to be part of the general machine
address space, both to the GPU / Blitter and to external processors. The advantage to the
GPU of having local memory is both that it is faster, and that it does not require ownershlp
of the system bus to be accessed.

This diagram shows the architecture and data paths of the graphics subsystem:

©1992 Flare II Limited 12 June, 1692

JAGUAR 7R

Jaguar Technical Reference Manual Page 39

lé6-bit CPU CPU access
IO bus ===t> GPU
\'\-—-
Instruction 32 GPU Bus Local RAM
Execution 7 Master —=1K x 32’
Unit
32 —
S|
32
i
Dual-port 32-bit = Blitter
Register File = Registers
32-bit GPU
Local bus
64-bit
ALU Block === Blitter Co-processor
Bus Master bus
GPU Gateway
to main bus
“N—f
»
©1992 Flare ll Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual

Page 40

5.1 Memory Map

The Graphics sub-system address space contains the following locations:

00402100
00402104
00402108
0040210C
00402110
00402114
00402118
0040211cC
00402200
00402204
00402208
0040220cC
00402210
00402214
00402218
0040221c
00402220
00402224
00402228
6040222¢C
00402230
00402234
00402238
0040223cC
00402240
00402248
00402250
00402258
00402260
00402268
00402270
00402274
006403000

GPU FLAGS RW
GPU MT¥C W
GPU MTXA W
GPU BIGEND
GPU_PC

GPU CTRL RW
GPU HIDATA
GPU REMAIN
BLIT AlBASE
BLIT AlFLAGS
BLIT A1WIN
BLIT ALPTR
BLIT_AlSTEP
BLIT AlSTEPF
BLIT A1lFRAC
BLIT ALINC
BLIT_AlINCF
BLIT A2BASE
BLIT A2FLAGS
BLIT A2MASK
BLIT A2PTR
BLIT A2STEP
BLIT CMD W
BLIT COUNT
BLIT SRCD W
BLIT DPSTDW
BLIT DSTZ W
BLIT SRCZ1
BLIT SRCZ2
BLIT PATD W
BLIT IINCW
BLIT ZINC W
GPU_RAMBASE

GFU flags

GPU matrix control

GPU matrix address

W GPU big / little endian control
RW GPU program counter

GPU operation control / status

RW GPU bus interface high long-word
GPU division remainder
Blitter Al base

Blitter Al flags

Blitter Al window size
Blitter Al pointer

Blitter Al step

Blitter Al step fraction
Blitter Al pointer fraction
Blitter Al pointer increment
Blitter Al pointer increment fraction
Blitter A2 base

Blitter A2 flags

Blitter A2 mask

Blitter A2 pointer

Blitter AZ step

Blitter command

W Blitter loop counters
Blitter source data

Blitter destination data

Blitter destination 2 data

w Blitter source Z data 1

W Blitter source Z data 2
Blitter pattern data

Blitter intensity increment
Blitter Z increment

w Local RAM base

=

EZ%£§S£§S=§§=QSBJEEHEW

All these locations may be accessed for read or write as appropriate at the above addresses
as 16-bit locations. In addition, for high-speed write operations, they may be written to as 32-
bit locations at an offset of 8003 hex from the addresses above. They are not readable at
these addresses.

©1992 Flare Il Limited

12 June, 1992

JAGUAR 7"

Jaguar Technical Reference Manual Page 41

6 Graphics Processor

This section describes the Jaguar Graphics Processor (GPU).
6.1 What is the Graphics Processor?

The Graphics processor (called here the GPU - Graphics Processor Unit) is a simple, very
fast, micro-processor; intended for performing the functions associated with generating
graphics, such as three-dimensional modelling, shading, fast animation, and unpacking
compressed images.

The graphics processor corresponds to the accepted notion of a R.1.S.C. processor (Reduced
Instruction Set Computing). This means that:

- most instructions execute in one tick

- all computational instructions involve registers

- memory transfers are performed by load/store instructions

- instructions are of a simple fixed format, with few addressing modes
- there is a wealth of registers, and local high-speed memory

It has several features to give high computational powers, including:

- highly pipe-lined architecture

- 40 MIPs peak throughput

- internal program/data RAM

- register score-boarding

- sixty-four thirty-two bit registers

- ALU includes barrel shifier and parallel multiplier

- systolic matrix multiplication

- fast hardware divide unit

- high-speed interrupt response, including video object interrupts
- close coupling with the Liitter R

6.2 Programming the Graphics Processor

The GPU is programmed in the same way as any other micro-processor. It has a full
instruction set with a broad range of arithmetic instructions, including add, subtract, multiply
and divide; boolean instructions, and bit-oriented instructions. It has a range of instructions
for loading and storing values in memory, with either register indirect or register indirect plus
offset addressing modes. It has jump relative and absolute instructions, both of which may
be made dependant on combinations of the zero, carry and negative flags. There are also
some more specialist instructions suited o computing matrix multiplies, and some useful aids
to fioating-point calculations.

The GPU is a full 32-bit processor in that all internal data paths are 32-bits wide, and all
arithmetic instructions (except multiply) perform 32-bit computations. The instructions are 16-
bits wide.

©1992 Flare Il Limited 12 June, 1992

JAGUAR

Jaguar Technical Reference Manual Page 42

The GPU has sixty-four internal 32-bit general purpose registers, of which thirty-two are visible
. at one time. It also has 1K of local high-speed 32-bit RAM, which is where its instructions and
“— working data are normalily stored. It also has access to external memory via the 64-bit co-
processor bus, and can perform byte, word, long-word and phrase data transfers on this bus. *
It can also execute its instructions from external RAM.

6.3 Design Philosophy

The GPU is a RISC processor, normally executing one instruction per tick, and therefore
capable of very high instruction throughput. The RISC versus CISC debate is a complex one,
and will not be discussed here. The RISC approach was chosen for the GPU principally
because it occupies less silicon.

The RISC approach leads to a processor design without micro-code, effectively the instruction
set is the micro-code, and most insiructions execute in one tick. The advantage is that
instructions are executed quicker, but the disadvantage is that some operations require more
instructions to execute.

The GPU is also intended to perform rapid floating-point arithmetic. However it has no
floating-point instructions as such, but has some specific simple instructions that allow a
limited precision fioating-point library to be capable of in excess of 1 MegaFlop.

The GPU is intended to be programmed in assembly language, and not in a compiled
language, as the tasks it is intended to perform are simple repetitive operations, best written
in assembly language.

~ 6.4 Pipe-Lining

The GPU design makes extensive use of pipe-lining to improve its throughput. This means
that although the GPU can achieve a peak rate of one instruction per tick, each instruction is
actually executed over several ticks, but only spends one tick at each pipe-line stage. ltis
imporlant to understand this as it does have some significant consequences on GPU
behaviour.

For a typical instruction, such as ADD, the pipe-line stages are:

decode instruction

read operands from registers
add operands

write result back to register

BN =

in addition to these stages, a pre-fetch unit attempts to maintain a small queue of unexecuted
instructions, to keep the instruction execution unit busy.

©1992 Flare Il Limited 12 June, 1992

JAGUAR “/™C

Jaguar Technical Reference Manual Page 43

Register Score-Boarding

The main side effect of the pipe-lined nature of GPU operation is to do with the interaction of)
instructions at different stages of the pipe-line, where they affect the same operand, or the °
same piece of the hardware.

For instance, if the instruction after an ADD was a second ADD of another value to the same
register; then if the two instructions were just to follow each other through the pipe-line, then
the second ADD would use the old value (the value from before the first ADD). Fortunately,
the GPU hardware detects this erroneous condition and suspends execution until the correct
value is ready. Clock cycles which occur during these hold-ups are referred to as wait stafes.

Figure 3 shows the data flow associated with the operands of an arithmetic instruction. The
thick lines correspond to a pipe-line stage, so that when an instruction is at the Read
operands stage, the previous instruction is at the Compute result stage, and the one before
that at the Write back result stage.

I - Read operands

RAM

b 4

< 7
hd
2 - Compute result ALU/

3 - Write back result 4
RAM

Figure 3 - Instruction data pipe-~line

Two problems arise from this architecture:

1, The RAM used within the GPU for its registers has only two data ports, so if the
instruction at stage three has to write back to a different register from the two registers
being read by the instruction at stage one, then a clash occurs.

2. The instruction at stage one of the pipe-line may need to read a value being computed
by the instruction at stage two, but this value will not be available until the instruction
at stage two reaches stage three.

To help the programmer avoid a whole class of these problems, the GPU operates what is
known as a score-board. This tags registers which will alter once some operation has been
completed, and will force program flow to wait if an instruction reads a tagged register. This
mechanism also applies to the flags, and will wait if:

©1992 Flare Il Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 44

- an instruction would read a register which is still in the process of being computed by
the ALU. ;

- an instruction would perform a conditional jump, or add/subtract with carry, before the
flags have been set as the result of some arithmetic operation.

- an instruction would read a register which is being read from internal memory.

- an instruction would read a register which is the target of a divide operation - as the
divide unit is relatively slow, this can cause a significant delay.

- an instruction would read from a register which is waiting to be loaded from slow
external memory (which takes a variable amount of time).

Register Write-Back

The score-board unit also controls the writing back of computed values. The registers are a
bank of dual-port RAM, so it is not possible to read two register values simultaneously while
writing to a third.

If the register to be written back to is being read by the instruction currently at stage 2 of the
pipe-line, or if one of the operands of that instruction does not involve a register read, then
the write-back will be concealed. Otherwise, the instruction will be held up one cycle while
the computed value is written back.

The score-board unit controls all operations which involve writing to registers, and will also
generate a wait state if the instruction that would have executed reads two registers, neither
of which is the target of the write. Write-back data sources are:

- the result of an ALU computation

- the result of a divide operation (this occurs in parallel with the ALU)
- the data from an internal load operation

- the data from an external load operation

If two of these are to be written back simuitaneously, execution is always held up for a tick.

Note that the concealed register write-back mechanism will fail if an instruction reads the same
register as both of its operands, therefore programmers should not use the same register as
both operands of an instruction if there is any possibility of a concealed write-back occeurring

One technique which can be used 1o help avoid wait states from the score-board unit is to
interleave two sets of calculations, i.e. ensure that consecutive instructions do not use the
same registers, but that instructions two apart generally do.

©1992 Flare If Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 45

Jump Instructions

Pipe-lining also affects the execution of jump instructions. The transfer of control does not .

occur until the instruction after the jump instruction has been executed. This can be '
confusing, but helps to increase the overall instruction throughput. The safest technique is
to follow all instruction with a NOP (null operation), but it is quite reasonable to place any
other instruction here - but see the notes below on program control flow.
6.5 Memory Interface
The Graphics Processor is intended to operate in parallel with the other processing elements
in the Jaguar system. In order to do this, a well-behaved GPU program should only make
occasional use of the main memory bus. The GPU therefore has a large amount of local
memory, currently four Kilobytes organised as 1K locations of thirty-two bits.
This memory is intended to be used for both program and data. It can be cycled at the
graphics processor clock rate, and so is extremely fast. It may be viewed as a simple cache
RAM, with software cache control - this technique is known as visible caching. When the
graphics processor is executing code out of internal RAM, program fetch cycles will occupy
less than half the RAM bandwidth.
To the GPU programmer the local RAM, local hardware registers, and external memory all
appear in the same address space. The GPU memory controller determines whether a
transfer is local or external, and generates the appropriate cycle. The only difference is that
only 32-bit transfers are possible within the GPU local address space, whereas 8, 16, 32 or
64-bit transfers are permitted externally.
\,. .

The local RAM sits on an internal GPU 32-bit bus. Also present on this bus are various GPU
control registers, and the blitter control registers. When a GPU tiransfer occurs outside the
local address space, a gateway connects the local bus to the main bus. If a sixty-four bit
transfer has been requested, a special register is used for the other half of the data.
The address space is organised as follows (a_ll addresses in bytes):

00000000 - O0401FFF external memory

00402000 - 004021FF graphics processor registers

00402200 - 004022FF blitter registers

00402300 - OD402FFF reserved

00403000 - 00403FFF local RAM

00404000 - O040FFFF reserved

00410000 - FFFFFFFF external memory
This local address space is also available to external devices via the 16-bit /O bus
mechanism (described elsewhere).
The GPU local bus can therefore perform transfers for three quile separate mechanisms.
These are, in decreasing order of priority:
- CPU /O access :

N

©1992 Flare Il Limited 12 June, 1992

JAGUAR ™

Jaguar Technical Reference Manual Page 48

- Operand data transfer
- Instruction fetch

The GPU and Data Ordering Conventions

The GPU can operate in both a big-endian and little-endian environment, and as long as the
memory interface is programmed to the correct endian mode, and the transfer requested is
the width of the operand required, then this operation is largely invisible to the programmer.

The GPU is itself little-endian - this means that the first instruction of the pair in a long-word
is the one aligned to bit 0 of the long-word.

6.6 Load and Store Operations

The GPU has a set of load and store instructions, each of which take two register operands.
One register is used to provide the address, the other is read to supply data to be stored, or
is written with load data.

Load and stores may be performed at byte, word, long-word and phrase width. Bytes and
words are aligned with bit 0, and when loaded the rest of the register is set to zero. When
phrases are read or written, a register within the GPU local address space should already
contain the other long-word for store operations, or is loaded with the other long-word for-load
operations. Performing phrase loads and stores is the fastest way of transferring blocks.

Load and store operations may also be performed using a simple indexed addressing scheme.
This allows either R14 or R15 to be used as a base register, with a five bit unsigned offset

- encoded into one of the register fields. There is a two tick overhead involved in using these
instructions, as the address has to computed.

in local memory, only long-word reads and writes are permitted.

Load and store operations will normally complete in one tick, or two ticks for indexed
addresses. The transfer may not be complete at this point, and if another load or store
operation occurs before the previous one has completed it will be held up. Load data is
written under the control of the score-board unit, which is described elsewhere.

The gateway between the GPU local bus and the external co-processor hus contains a
control block for generating external memory transfers. When this block is idie, load and store
operations complete as quickly as they would in local memory. For load operations, the data
is not loaded into the target register, however, until the external transfer has taken place. The
score-board mechanism prevents use of this data before it has been loaded, but other
computation may take place. If there is another load or store instruction in the program before
the gateway has completed its transfer, then it will be held up until the gateway is idle.

Operand data transfers may occur at two bus priorities in external memory, either at the
normal GPU priority, or at the higher DMA priority level. This is controlled by the DMAEN flag.
This does not affect program reads, which are always at GPU priority. Bus priority is
discussed elsewhere,

©1992 Flare Il Limited 12 June, 1992

JAGUAR /K

Jaguar Technical Reference Manual Page 47

6.7 Arithmetic Functions

The GPU contains a powerful ALU section, which as well as the normal arithmetic and .
boolean functions, all with 32-bit word size, contains a 16 x 16 fast parallel multiplier, and a
32-bit barrel shifter, both of which perform their respective functions in one tick.

The GPU also contains a divide unit. This performs serial division at the rate of two bits per
tick, on 32-bit unsigned operands, producing a 32-bit quotient. The operation of this runs in
parallel with normal GPU operation.

The ALU has the following set of flags:

Z zZero set appropriately by all arithmetic operations, normally being
set if the result of the operation was zero.

N negative set appropriately by all arithmetic operations, normally being
set if the result of the operation was negative (bit 31 is a one).

C carry set according to carry or borrow out of all add and subtract

operations; set with the bit that is shifted out of shift and rotate
operations for shift by one; left undefined by other arithmetic
operations.

6.8 Interrupts

The GPU can be interrupted by five sources. Interrupts force a call to an address in local
RAM, given by sixteen times the interrupt number (in bytes), from the base of RAM. It is the
responsibility of the programmer to preserve the registers and flags of the underlying code.
Primary register 31 is the interrupt stack pointer. Primary register 30 is corrupted when
instruction flow is transferred to the interrupt service routine. Neither register should be used
for any other purpose when interrupts are enabled.

Interrupts are allocated as follows:

blitter

object processor

timing generator

external, used to allow the GPU to act as a DMA controller
CPU interrupt

O N WA

The flags register contains individual interrupt enables for each of these sources, as well as
a master interrupt mask for all interrupts. When the master interrupt mask is set, the primary
register bank is selected (see below).

When an interrupt occurs, the master interrupt mask bit is set. The individual enables are not
affected, but no other interrupts will be serviced until the mask bit is cleared. The interrupt
service routine should clear the master interrupt mask, and the appropriate interrupt latch, and
enable higher priority interrupts immedialtely.

©1992 Flare Il Limited 12 June, 1692

JAGUAR -7

Jaguar Technical Reference Manual Page 48

The value pushed onto the R31 stack is the address of the last instruction to be executed
before the interrupt occurred. The interrupt service routine should therefore add two to this
“~ value before using it 1o return from the interrupt.

The interrupt latches may be read in the status port, and are cleared by writing a one to their
clear bits, writing a zero leaves them unchanged.

The cause of the interrupt may be determined by the location jumped to, but not from the flags
register, as more than one interrupt latch bit may be set.

There is a certain degree of interrupt prioritization, in that if two interrupts arrive within a few
ticks of each other, the higher numbered will be serviced first. Beyond this, interrupt
prioritization is under software control, as described above.

The only operations that are atomic are single instructions, or certain instruction combinations
(see below). Interrupts may be disabled by clearing all the enable bits. It is therefore not
practical for the interrupt stack 1o be shared with the underlying code, unless all interrupts are
masked across stack operations.

An example interrupt service routine, which does no more than clear the interrupt, is shown
below. The interrupt source was interrupt 2.

int serv:

movei GPU FLAGS, ric ; point R30 at flags register

lead (r30},r29 ; get flags

bclr 3,r2¢ ; clear IMASK

bset 11, r29 ; and interrupt 2 latch

load (r31), 28 ; get last instruction address
S . addg 2,r28 ; point at next to be executed

addq 4,r31 ; updating the stack pointer

jump {r28) ; and return

store r2%, (r30) ; restore flags

Similar interrupt service routines can handle ali the interrupts. Note the following points about
this code:

- Registers r28 and r29 may not be used by the under-lying code as they are corrupted,
in addition to r30 and r31 which are always for interrupts only. -

- Interrupts are re-enabled on the instruction after the jump. If they were enabled any
sooner then no other interrupt service routine would be able to use r28 and r29, as
they could potentially corrupt them before this service routine had completed,

Atomic Operations

It is necessary for certain operalions to be atomic. Three GPU instruction types temporarily
lock out interrupts while they complete their operation. These are:

- Immediate data moves, using the MOVE! instruction. Interrupts are locked out while
the two words of immediate data are fetched.

- Matrix multiply operations, using the MMULT instruction. Interrupts are locked out until
the operation has completed.

©1992 Flare I Limited 12 June, 1992

JAGUAR 7R

Jaguar Technical Reference Manual Page 49

- Multiply and accumulate operations, using the IMULTN and IMACN instructions. The
result register is not preserved by interrupts, and therefore any muitiply/accumulate
operation must consist of a sequence of IMULTN and IMACN instructions followed by
a RESMAC instruction, with no intervening instructions. The IMULTN and IMACN °
instructions are always atomic with the succeeding instruction. See the section below
on muliply / accumulate instructions. :

- Jump instructions are always atomic with the instruction which succeeds them.

6.9 Program Control Flow

Program control normally runs upwards through memory executing instructions sequentially.
The GPU can also transfer program flow by performing jump instructions.

Two types of jump are supported, relative and absolute. Jump relative takes a signed five-bit
offset, which is treated as an offset in words, and added to the program counter. Jump
absolute transfers the contents of a register into the program counter.

Both types of jump may be conditional on the contents of the ALU flags. if the appropriate
condition is not met, then the jump instruction is ignored and program flow continues with the
next instruction after the jump.

The instruction after a jump is always executed. This is a side-effect of the pre-fetch
queue. Programmers may choose either o place a NOP afler every jump instruction, or may
take advantage of this to place a useful instruction after the jump which will be executed
whichever branch is followed.

S - Do not place a MOVEI instruction after a jump, as the jump will take effect before the
data is fetched, and so will change where the immediate data is fetched from.

- Do not place two jump instructions sequentially, the results are not predictable, and
may not be relied on.

The program counter may also be copied into a register.

The GPU can cease operation by clearing the GPUGO bit in the GPU control register
(described below). It may then only be restarted by an external write to this register, or by a
reset.

Single Step Operation

As an aid to the debugging of GPU programs, the GPU can be set to single step through
programs, pausing between instructions until restarted. This operation is controlled by and
external CPU as follows:

1- Set up the program counter, then set the GPUGO and SINGLE_STEP control bits in
the control register.

2- Poll for the SINGLE_STOP flag in the status register - at this point the first instruction
has been executed.

—

@71992 Flare I Limited 12 June, 1892

JAGUAR 7™

Jaguar Technical Reference Manual Page 50

3- Set the SINGLE_GO bit in the control register (keeping GPUGO and SINGLE_STEP

set).
. 4- Poll for the SINGLE_STOP flag, which indicates that the next instruction has been ‘
executed.)
5- Repeat from step 3.
If the GPU register file is to be read from or written to, then single-stepping will have to be
suspended and an appropriate transfer routine run, which will require that the GPUGO bit
must be cleared first and the program counter modified. Unfortunately, clearing the GPUGO
bit has the effect of altering the value in the program counter, as the pre-fetch queue is
discarded. Therefore, after step 4 above, the following operations should be performed:
- read the program counter value
- clear the GPUGO control bit
- read or write to the register file as required
- add two to the program counler value read
- restart from step 1 above
It is necessary to add two to the program counter, as the value read reflects the last
instruction executed (or last word of immediate data if it was MOVEL.
6.10 Multiply and Accumulate Instructions
The GPU supports multiply and accumulate (MAC) operations. These involve multinlying two
values together, and adding their product to the sum of the products of some previous multiply
operations. These are typically used for matrix multiply and digital filtering type applications.
— :
Due to the pipe-lined nature of the design, the multiply and its associated add do not take
place in the same cycle. MAC instructions are not therefore like other instructions, in that a
special instruction is needed to write back their result.
Take as an example multiplying R8 times R9, R10 times R11, R12 time R13, and placing the
sum of their products in R2. All values are signed. The instructions are as follows:
imultn r8,r9 ; compute the first product, into the result
imacn rl0,rll ; second product, added to first
imacn riz2, rl3 ; third product, accumulated in result
resmac r2 ; sum of preoducts is written to r2
MAC instructions may only be foliowed by further MAC instructions or by the RESMAC
instruction. No other combinations are permitted.
N

©1992 Flare Il Limited 12 June, 1992

JAGUAR -’*

Jaguar Technical Reference Manual Page 51

6.11 Systolic Matrix Multiplies

. The GPU contains a mechanism for performing integer matrix multiplies at a burst rate of the .
maximum obtainable from the hardware multiplier, which is one multiply per tick. This is '
generally useful, but has been designed in particular for the matrix multiplies required by the
Discrete Cosine Transform algorithm. One technique for this involves performing two Bx8
integer matrix multiplies in succession on a matrix, using the same fixed coefficients, but
rotated for the second multiply.

The GPU therefore has a MMULT instruction, which initiates a sequence of between three and
fifteen multiply / accumulate instructions, as described above, corresponding to one product
term of the resuit matrix. One of the source matrices is held in the secondary register bank,
the other in local RAM. The matrix held in registers is packed, i.e. two elements per register.
This allows all of an eight-by-eight matrix to be stored in the secondary register bank.

A matrix multiply is initiated by the MMULT instruction. This takes as its source parameter
the register, which is always in the secondary register bank, containing the first two elements
of the matrix row. lIts destination parameter is the register, in the currently selected register
bank, in which to write the result.

The matrix held in RAM may be accessed in either increasing row or increasing column order,
in other words the data for each successive multiply operation are either one location or the
matrix width apart.

Like interrupts, the systolic operation is performed by forcing internally generated instructions
into the instruction stream. The first instruction is IMULTN, the middle ones IMACN, and the
~— last RESMAC. These have their operands modified in the manner described above.

The MMULT instruction should not be preceded by a LOAD or STORE instruction.
6.12 Register File

The GPU contains a register file of sixty-four thirty-two bit registers. All of them may be used
as general purpose registers, although some are also assigned special functions.

Al instructions contain two five-bit register operand fields, although they are not always used
as such. Where an instruction references a register, this five-bit field is turned into the register
address. There are two banks of these 32-bit registers, primary and secondary. The primary
register bank, bank 0, is always used for interrupt service,

Bank select bits are provided in the flags register, and special MOVE instructions allow data
to be moved between banks.

®@1992 Flare I Limited 12 June, 1992

JAGUAR <

Jaguar Technical Reference Manual Page 52

6.13 External CPU Access

The GPU internal address space is accessible to an external bus master at any time - external .
access having the highest priority on the GPU local bus. This means that the biitter may be
used to load data into the local RAM.

The local address space is accessible for read or write at the addresses given elsewhere in
this document, and these locations are presented as sixteen bit memory, which must always
be accessed in the order low address then high address.

To allow faster transfers into the GPU space, all the registers are also available as thirty-two
bit memory, at an offset of 8000 hex from their normal addresses. At this address, the internal
memory is write only.

If the blitter is being used to write into the GPU space, then phrase wide transfers may be
performed, as the bus control mechanism will automatically divide these up to suit the width
of the memory being addressed.

6.14 Instruction Set

The GPU instructions are all sixteen bits, made up as follows:

1514 13121110 9 8 7 6 5 4 3 2 1 0

L L]

Lopcode—-wJ re g 11— e gz _

- opcode defines the instruction to be executed
- reg2 is the destination register, or the only register of single register instructions
- reg1 is the source register

The reg2 and reg1 fields can have other meanings with some instructions. When both
operands are registers, the general rule is that they should not be the same register. This is
discussed above under regisler write-back.

The instruction set is as follows, where the syntax is
<Opcode name> <source> <destination>

Code | Syntax Description

0 ADD Rn.Rn 32-bit two's complement integer add, result is destination
register contents added to the source register contents, and is
written to the destination register.

Z set if the result is zero
N set if the result is negative
C represents carry out of the adder
©1992 Flare Il Limited 12 June, 1992

JAGUAR “-7*

Jaguar Technical Reference Manual

Page 53

1 ADDC Rn,Rn

32-bit two's complement integer add with carry in according to
the previous state of the carry flag, otherwise like ADD.

Z set if the result is zero .
N set if the result is negative)
c represents carry out of the adder

2 ADDQ n,Rn

32-bit two's complement integer add, where the source field is
immediate data in the range 1-32, otherwise like ADD.

Z set if the result is zero
N set if the result is negative
c represents carry out of the adder

3 ADDQT n,Rn

32-bit two's complement integer add, like ADDQ except that it is
transparent to the flags, which retain their previous values.
ZNC unaffected

4 SUB Rn,Rn

32-bit two's complement integer subtract, result is the source
register contents subtracted from the destination register
contents, and is written to the destination register. The carry
flag represents borrow out of the subtracter, and the zero flag is
set if the result is zera,

Z set if the result is zero

N set if the result is negative

C represents borrow out of the subtracter

5 SUBC Rn.Rn

32-bit twa's complement integer subtract with borrow in
accerding to the carry flag, otherwise like SUB.

Z set if the result is zero

N set if the result is negative

c represents borrow out of the subtracter

6 sSuUBQ n,Rn

32-bit two's complement integer subtract, where the source
field is immediate data in the range 1-32, otherwise like SUB.
Zz set if the result is zero

N set if the result is negative

Cc represents borrow out of the subtracter

7 SUBQT n,Rn

32-bit two's complement integer subtract, like SUBQ except that
it is transparent to the flags, which retain their previous values.
ZNC unaffected

8 NEG Rn

32-bit two's complement negate, the result is the destination
register contents subtracted from zero, and is written back to
the destination register.

Zz set if the result is zero
N set if the result is negative
C represents borrow out of the subtracter

@1992 Flare Il Limited

12 June, 1962

JAGUAR -7#

Jaguar Technical Reference Manual

Page 54

9 AND Rn,Rn 32-bit logical AND, the resuit is the boolean AND of the source
register contents and the destination register contents, and is
written back to the destination register.

Z set if the result is zero
N set if the result is negative
C undefined

10 OR Rn,Rn 32-bit logical OR, the result is the boolean OR of the source
register contents and the destination register contents, and is
written back to the destination register.

z set if the result is zero
N set if the result is negative
C undefined

11 XOR Rn,Rn 32-hit logical XOR, the result is the boolean XOR of the source
register contents and the destination register contents, and is
written back to the destination register.

Z set if the result is zero
N set if the result is negative
C undefined

12 NOT Rn 32-bit logical invert, the result is the boolean XOR of FFFFFFFF
hex and the destination register contents, and is written back to
the destination register.

Z set if the result is zero
N set if the result is negative
C undefined

13 BTST n.,Rn Test the bit in the destination register selected by the immediate
data in the source field, which is in the range 0-31.

Z set if the selected bit is zero
N set if bit 31 is one
C undefined

14 BSET n,Rn Set the bit in the destination register selected by the immediate
data in the source field, which is in the range 0-31. The cother
bits of the destination register are unaffected.

Z : set if the result is zero
N set if the result is negative
C not defined

15 BCLR n,Rn Clear the bit in the destination register selected by the
immediate data in the source field, which is in the range 0-31.
The other bits of the destination register are unaffected.

Z set if destination register is now all zero
N set from bit 31 of the result
C not defined

©1992 Flare Il Limited

12 June, 1992

JAGUAR -7*R

Jaguar Technical Reference Manual

Page 55

16 MULT Rn,Rn 18-bit unsigned integer multiply, the 32-bit result is the unsigned
integer product of the bottom 16-bits of each of the source and
destination registers, and is written back to the destination .
register. '
Z set if the result is zero
N set if bit 31 of the result is one
C undefined

17 IMULT Rn,Rn 16-bit signed integer multiply, the 32-bit result is the signed
integer product of the bottom 16-bits of each of the source and
destination registers, and is written back to the destination
register.
z set if the result is zero
N set if the result is negative
c undefined

18 IMULTN Rn,Rn Like IMULT, but result is not written back to destination register.
Intended to be used as the first of a multiply/accumulate group,
as there are potential speed advantages in not writing back the
result.
z set if the result is zero
N set if the result is negative
C undefined

19 RESMAC Rn Takes the current contents of the result register and writes them
to the register indicated. Intended to be used as the final
instruction of a multiply/accumulate group.
* refer to the section on Multiply and Accumulate

instructions

ZNC unaffected

20 IMACN Rn,Rn 16-bit signed integer multiply and accumulate, like IMULT,
except that the 32-bit product is added to the result of the
previous arithmetic operation, and the result is not written back
to the destination register. Intended to be used after IMULTN to
give a multiply/accumulate group.
* . refer to the section on Muitiply and Accumulate

instructions

ZNC unaffected

21 DIV Rn,Rn 32-bit dividend, 32-bit divisor, unsigned division, yielding 32-bit
quotient, like normal microprocessor division. Refer to the
section on arithmetic functions.
ZNC unaffected

22 ABS Rn 32-bit integer absolute value. Has the same effect as NEG if
the operand is negative, otherwise does nothing.
z set if the result is zero
N cleared
C sel if the operand was negative

©1992 Flare I Limited

12 June, 1992

JAGUAR '™

Jaguar Technical Reference Manuaf

Page 56

23 SH Rn,Rn 32-bit shift left or right given by the value in the source register.
A positive value causes a shift to the right. Values of plus or
minus thirty-two or greater give zero. Zero is shifted in. .
Z set if the result is zero '
N set if the result is negative
c represents bit 0 of the un-shifted data for right
shift, or bit 31 for left shift
24 SHLQ n,Rn 32-bit shift left by n positions, in the range 1-32. Otherwise like
SH. (The shift value is actually encoded as 32-n, this is
handled by the assembler).
z set if the result is zero
N set if the resuit is negative
c represents bit 31 of the un-shifted data
25 SHRQ n,Rn As SHLQ but shift right, zero shifted in.
Z set if the result is zero
N set if the result is negative
C represents bit 0 of the un-shifted data
26 SHA Rn,Rn As SH but right shift is arithmetic, i.e. sign shifted in.
Z set if the result is zero
N set if the result is negative
c represents bit O of the un-shifted data for right
shift, or bit 31 for left shift ’
27 SHARQ n,Rn As SHRQ but arithmetic shift right, i.e. sign shifted in. Best
mnemonic.
z set if the result is zero
N set if the result is negative
c represents bit 0 of the un-shifted data
28 ROR Rn,Rn 32-bit rotate right by the bottom 5 bits of the source register.
Can be used for ROL functions by complementing the value.
Z set if the result is zero
N set if the result is negative
C represents bit 31 of the un-shifted data
29 RORQ n,Rn Immediate data version of ROR. -
zZ set if the result is zero
N set if the result is negative
C represents bit 31 of the un-shifted data
30 CMP Rn,Rn 32-bit compare, this is the same as SUB without the result
being stored, but the flags reflect the result of the comparison,
which may therefore be used for equality testing and magnitude
comparison.
Z set if the result is zero (operands equal)
N set if the result is negative (source greater than
destination operand)
C represents borrow out of the subtracter

©71992 Flare If Limited

JAGUAR -7

12 June, 1 99_2

Jaguar Technical Reference Manual

Page 57

21

CMPQ n,Rn

32-bit compare with immediate data in the range -16 to +15.

z set if the result is zero (operands equal)

N set if the resuit is negative (immediate data
greater than destination operand) :

c represents borrow out of the subtracter

32

SAT8 Rn

Saturate the 32-bit signed integer operand value to an 8-bit
unsigned integer. If it is negative it is set to zero, if it is greater
than 255 it is set to 255. This is useful for computed intensities
and so on, to counteract the effect of rounding errors.

z set if the result is zero

N cleared

c undefined

33

SAT16 Rn

Saturate the 32-bit signed integer operand value to an 18-bit
unsigned integer. If it is negative it is set to zero, if it is greater
than 65535 it is set to 65535. This is useful for computed Z,
audio values, and so on, to counteract the effect of rounding
elrors.

z set if the result is zero

N cleared

C undefined

34

MOVE Rn,Rn

32-bit register to register transfer.
ZNC unaffected

35

MOVEQ n,Rn

32-bit register load with immediate value in the range 0-31,
ZNC unaffected

36

MOVETA Rn,Rn

32-bit register fo alternate register transfer, the destination
register lying in the other bank of 32 registers.
ZNC unaffected

37

MOVEFA Rn,Rn

32-bit alternate register to register transfer, the source register
lying in the other bank of 32 registers.
ZNC unaffected

38

MOVEI n,Rn

32-bit register load with next 32-bits of instruction stream. The
first word in the instruction stream is the low word, the second
the high word.

ZNC unaffected

39

LOADB (Rn),Rn

8-bit memory read. The source register contains a 32-bit byte
address. The destination register will have the byte loaded into
bits 0-7, the remainder of the register is set to zero. This
applies to external memory only, internal memory will perform a
32-bit read.

ZNC unaffected

©1992 Flare It Limited

JAGUAR -7

12 June, 1992

Jaguar Technical Reference Manual

Page 58

40

LOADW (Rn).,Rn

16-bit memory read. The source register contains a 32-bit byte
address, which must be word aligned. The destination register
will have the word loaded into bits 0-15, the remainder of the
register is set to zero. This applies to external memory only,
internal memory will perform a 32-bit read.

ZNC unaffected

41

LOAD (Rn),Rn

32-bit memory read. The source register contains a 32-bit byte
address, which must be long-word aligned. The destination
register will have the data loaded into it.

ZNC unaffected

42

LOADP (Rnm),Rn

64-bit memory read. The source register contains a 32-bit byte
address, which must be phrase aligned. The destination
register will have the low long-word loaded into it, the high ong-
word is available in the high-half register. This applies to
external memory only, internal memeory will perform a 32-bit
read.

ZNC unaffected

43
44

LOAD (R14+n),Rn
LOAD (R15+n),Rn

32-bit memory read, as LOAD, except that the address is given
by the sum of either R14 or R15 and the immediate data in the
source register field, in the range 1-32. The offset is in long
words, not in bytes, therefore a divide by four should be used
on any label arithmetic to give the offset. This is slower than
normal LOAD operations due to the two-tick overhead of
computing the address.

ZNC unaffected

45

STOREB Rn,(Rn)

8-bit memory write. The source register contains a 32-bit byte
address. The destination register has the byte to be written in
bits 0-7. This applies to external memory only, internal memory
will perform a 32-bit write.
ZNC unaffected

46

STOREW Rn,(Rn)

16-bit memory write. The source register contains a 32-bit byte
address, which must be word aligned. The destination register

has the word to be written in bits 0-15. This applies to external

memory only, internal memory will perform a 32-bit write.

ZNC unaffected

47

STORE Rn,(Rn)

32-bit memory write. The source register contains a 32-bit byte
address, which must be long-word aligned. The destination
register contains the data to be written.

ZNC unaffected

48

STOREP Rn,(Rn}

64-bit memory write. The source register contains a 32-bit byte
address, which must be phrase aligned. The destination
register contains the low long-word of the data to be written, the
high long-word is obtained from the high-half register. This
applies to external memory only, internal memory will perform a
32-bit write.

ZNC unaffected

©1992 Flare I Limited

12 June, 1992

JAGUAR R

Jaguar Technical Reference Manual

Page 59

49
50

STORE Rn,(R14+n)
STORE Rn,(R15+n)

32-bit memory write, write as STORE, with address generation
in the same manner as the equivalent LOAD instructions.
ZNC unaffected

+

51

MOVE PC,Rn

Load the destination register with the address of the current
instruction. The actual value read from the PC is modified to
take into account the effects of pipe-lining and prefetch, to give
the correct address. This is the only way for the GPU to read
its own PC.

ZNC unaffected

52

JUMP cc,(Rn)

Jump to location pointed to by the source register, destination

field is the condition code, where the bits encode as follows:

Bit Condition

0 zero flag must be clear for jump to occur

1 zero flag must be set for jump to occur

2 flag selected by bit 4 must be clear for jump to
occur

3 flag selected by bit 4 must be set for jump to
occur

4 if set select negative flag, if clear select carry.

If more than one condition is set, then they must all be true for

the jump to occur (the conditions are ANDed).

ZNC unaffected

53

JR cc,n

Relative jump to the location given by the sum of the current
address and the immediate data in the source field, which is
sighed and therefore in the range +15 or -16 words. The
condition codes encode in the same way as JUMP.

ZNC unaffected

54

MMULT Rn,Rn

Start systolic matrix element multiply, the source register is the
location of the register source matrix, the product is written into
the destination register. Refer to the section on matrix
multiplies. The flags reflect the final multiply/accumulate
operation:

z . set if the result is zero

N set if the result is negative

Cc represents carry out of the adder

535

MTO! Rn,Rn

Extract the mantissa and sign from the |IEEE 32-bit floating-point
number in the source register, and create a signed integer in the
destination. The most significant bit is bit 23, but the value is
sign extended.

Z set if the result is zero

N set if the result is negative

Cc undefined

©71992 Flare I Limited

12 June, 1992

JAGUAR -7/*¢

©1992 Flare I Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual

Page 60

56 NORMI Rn.Rn

Gives the ‘normalisation integer' for the value in the source
register, which should be an unsigned integer. The
normalisation integer is the amount by which the source should
be shifted right to normalise it (the value can be negative), 'and
is also the amount to be added to the exponent to account for
the normalisation.

Z set if the result is zero
N set if the result is negative
C undefined
57 NOP Do nothing.
ZNC unaffected

©171992 Flare I Limited

12 June, 1992

JAGUAR “7*g

Jaguar Technical Reference Manual Page 61

6.15 Internal Registers

This section describes the internal registers of the Graphics processor. Nole that some of i
these are read or write only.

All GPU registers are 32-bit, and will require all 32 bits to be written.

Flags Register

00402100 GPUFLAGS Read/Write

This register provides status and control bit for several important GPU functions. Control bits
are:

0 ZERO_FLAG The ALU zero flag, set if the result of the last arithmetic
operation was zero. Certain arithmetic instructions do not
affect the flags, see above.

1 CARRY_FLAG The ALU carry flag, set or cleared by carry/borrow out of the
adder/subtracter, but undefined after other arithmetic
operations.

2 NEGA_FLAG The ALU negative flag, set if the result of the last arithmetic
operation was negative. '

3 IMASK interrupt mask, set by the interrupt control logic at the start of

the service routine, and is cleared by the interrupt service
routine writing a 0. Writing a 1 to this location has no effect.

4-8 INT_ENAO-4 Interrupt enable bits for interrupts 0-4. The status of these
bits is overridden by IMASK.
9-13 INT_CLRO-4 Interrupt latch clear bits. These bits are used to clear the

interrupt latches, which may be read from the status register.
Writing a zero to any of these bits leaves it unchanged, and
the read value is always zero.

14 REGPAGE Switches from register bank 0 to register bank 1. This
function is overridden by the IMASK flag, which forces register
bank 0 to be used.

15 DMAEN When DMAEN is set, GPU LOAD and STORE instructions
perform external memory transfers at DMA priority, rather than
GPU priority. This has no effect on program data fetches,
which continue at GPU priority.

WARNING - writing a value to the flag bits and making use of those ftag bits in the following
instruction will not work properly due to pipe-lining effects. If it is necessary to use flags set
by a STORE instruction, then ensure that at least one other instruction lies between the
STORE and the flags dependent instruction.

@©1992 Flare Il Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 62

Matrix Control Register
\ 00402104 MTXCTRL Write only
This register controls the function of the MMULT instruction. Control bits are:
0-3 MWIDTH Matrix width, in the range 3 to 15
4 MADDW When set, this control bit make the matrix held in memory be
accessed down one column, as opposed to along one row.
Matrix Address Register
00402108 MTXADDR Write only

This register determines where, in local RAM, the matrix held in memory is.

2-11 MTXADDR Matrix address.

Data Organisation Register
0040210C DATAORG Write only

This register controls the physical layout of pixel data and CPU /O registers. If its current
contents are unknown, the same data should be written 1o both the low and high 16-bits.

. 0 BIG_IO When this bit is set, 32-bit registers in the CPU I/O space are

- big-endian, i.e. the more significant 16-bits appear at the lower
address.

1 BIG_PIX When this bit is set the pixel organisation is big-endian. See

the discussion elsewhere in this document.
GPU Program Counter

00402110 GPU_PC Read/Write

The GPU program counter may be written whenever the GPU is idle (GPUGO is clear). This
is normally used by the CPU to govern where program execution will start when the GPUGO
bit is set.

The GPU program counter may be read at any time, and will give the address of the
instruction currently being executed. If the GPU reads it, this must be performed by the
MOVE PC,Rn instruction, and not by performing a load from it.

The GPU program counter must always be written to before setting the GPUGO contro! bil.
When the GPUGO bit is cleared, the program counter value will be corrupted, as at this point
the pre-feich queue is discarded.

©1992 Flare Il Limited 12 June, 1992

JAGUAR -

Jaguar Technical Reference Manual Page 63

GPU Control/Status Register

00402114 GPUCTRL Read/Write

This register governs the interface between the CPU and the GPU.

0

11

12-15

GPUGO This bit stops and starts the GPU. The CPU or GPU may
write to this register at any time. The status of ihis bit after a
system reset may be externally configured.

CPUINT Writing a 1 to this bit allows the GPU to interrupt the CPU.
There is no need for any acknowledge, and no need to clear
the bit to zero. Writing a zero has no effect. A value of zero
is always read. ool

GPUINT1 Writing a 1 to this bit causes a GPU interrupt type 1. There
is no need for any acknowledge, and no need to clear the bit
to zero. Writing a zero has no effect. A value of zero is
always read.

SINGLE_STEP When this bit is set GPU single-stepping is enabled. This
means that program execution will pause after each
instruction, until a SINGLE_GO command is issued.

The read status of this flag indicates whether the GPU has
actually stopped, and should be polled before issuing a further
single step command. .

SINGLE_GO Writing a one to this bit advances program execution by one
instruction when execution is paused in single-step mode.
Neither writing to this bit at any other time, nor writing a zero,
will have any effect. Zero is always read.

DMA_ACK Setting this bit sets the external DMA acknowledge line. The
hardware does not generate a pulse, so software should write
a1 then a 0, or vice versa, as required. The actual pin of the
Jaguar device is the inverse of this bit.

INT_LATO-4 Interrupt latches. The status of these bits indicate which
interrupt request latch is currently active, and the appropriate
bit should be cleared by the interrupt service routine, using the
INT_CLR bits in the flags register. Writing to these bits has
no effect.

BUS_HOG When the GPU is executing code out of external RAM it will
normally give up the bus between program fetches. This
behaviour should allow the CPU to continue to run at the
same time. Setting this bit causes the GPU to attempt to hold
on to the bus between program fetches, which improves its
execution speed, at the expense of any lower priority device
using the bus.

VERSION These bits allow the GPU version code to be read. Currently
this has the value 1. Future variants of the GPU may contain
additional features or enhancements, and this value allows
software to remain compatible with all versions. It is intended
that future versions will be a superset of this GPU,

©1992 Flare If Limited

12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manual Page 64

High Data Register
00402118 HIGHDATA Read/Write
This 32-bit register provides the high part of GPU phrase reads and writes. It is physically a

single register, and therefore a phrase read followed by a phrase write will write back the
same high data unless this register is modified.

©1992 Flare If Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 65

7 Blitter
This section describes the Jaguar Blitter.
7.1 What is the Blitter?
Blitter is an abbreviation for bit block processor. It purpose is to process, by filling or copying,
blocks of bits or pixels. These blocks may be one contiguous piece, or they may be sub-
blocks (such as rectangles) within a larger pixel array.
The blitter may also be seen as a hardware engine designed for painting and moving pixels
as quickly as possible - it performs a variety of graphics operations at a rate limited largely
by the memory access speed. Itis used as an aid to the GPU, allowing a GPU program to
process high-level graphics operations, whilst the blitter, in parallel, performs the low-level
repetitive pixel-by-pixel operations.
For example, the GPU might calculate the co-ordinates and gradients associated with a
polygon, while the blitter draws the strips of pixels. Alternatively, the GPU might be
processing text with attributes, and computing font addresses and window positions, while the
blitter paints the characters.
The blitter can perform a variety of operations on blocks of memory, including:
- simple memory copies

~ - copies and fills of rectangles within windows
- line-drawing
- image rotation and scaling
- single-scans of polygons fills
- Gouraud shading
- Z-buffering.
The blitter can operate on 1, 2, 4, 8, 16 or 32 bit packed pixels, with considerable flexibility
with regard to the memory layout.
The tour de force of the blitter is its ability to generate Gouraud shaded polygons, using Z-
buffering, in sixteen bit pixel mode. A lot of the logic in the blitter is devoted to its ability to
create these pixels four at a time, and to write them at a rate fimited only by the bus
bandwidth, using the GPU to calculate the Z and intensity gradients and start and stop pixels
on a line-by-line basis. This will give the system the ability to generate realistic animated 3D
graphics.

\-r—"
©1992 Flare Il Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 66

Graphics Processor Data Bus Address
— T Comparator
Command Address Address
Registers _J\ Generator
Controlling l/
State Machines

|

4 F Address>
Counters Address /l_

Adders
Data
Comparators
e
N =
"] Data LFUand | [~
Co-processor Data In Registers Output Ca-processor -

Selection Data Out

f.f —
Mux | or Z
— .
Intensity L _|

or Z Adders

G
Figure 4 - Blitter Architecture

7.2 Programming the Blitter

The bilitter is programmed by setting up a description of the required operation in its registers.

These are accessible in the system memory map, and so may be set by the GPU or by an
external processor.

The registers control the three functional blocks that make up the blitter, the address
generator, data path, and control logic. Each of these is described in the sections that follow.

The descriptions that follow give a fairly dry account of how the blitter works. These are

useful for reference, but for an introduction to how to use the blitter use the examples further
on.

©1992 Flare I Limited 12 June, 1992

JAGUAR -7/

Jaguar Technical Reference Manual Page 67

The biitter architecture is summarised in Figure 4.

N | 7.3 Address Generation

The address generator generates an address within a window of pixels. A window is a
packed array of pixels in memory, and may well be the data associated with an object
processor object. A window is described by its base address and width. A pointer into this
window is set up for the blitter start position, and is programmed in terms of its X and Y
address. The ability to program the address generator in pixel address terms considerably
simplifies the task of preparing blitter commands.

in addition to these registers, various other registers contain specific values to allow
considerable flexibility in how the pointers are modified during blitter operations.

The blitter has two address generation units, used for the source and destination addresses
of copy operations, etc. The two address generators are called A1 and A2. A1 is normally
the destination address register and A2 the source, although these roles may be reversed.
A1 is more sophisticated in its address generation capabilities than A2.

@1892 Flare I Limited 12 June, 1962

JAGUAR -7

Jaguar Technical Reference Manual Page 68

The address register block looks like this:

00402200 |Al base address

00402204 |Al control flags

00402208 |Al window size

0040220C |Al pointer

00402210 (Al ster integer part

00402214 (Al step fractional part

00402218 |Al pointer fractional part

0640221C |Al increment integer part

00402220 (Al increment fractional part

00402224 |A2 base adcress

00402228 |A2 control flags

0040222C |A2 window mask

00402230 |A2 pointer

00402234 |AZ step integer part

Windows

All notions of address within the blitter correspond with the concept of a window. A window
is a rectangle of pixels, stored in memory as a linear array of packed phrases. A window is
described by a base register, and has a width and height, both in pixels. A set of flags
describe the size of those pixels, their physical layout in memory, and various aspects of how
the pointer is updated.

The address itself is generated from a window pointer. This has an X and Y value, and again
is in pixels. The pointer may point to areas outside the window, and A1 supports hardware
clipping of addresses outside the window.

Address Generation

The X and Y pointers are sixteen bit values. However, the address generation mechanism
will only generate valid addresses for Y values in the range 0-4085, i.e. it treats Y values as
12-bit unsigned values. The higher order bits of Y are ignored. X is treated as an unsigned
16-bit value.

The address generator derives the window width from a very simple six-bit floating-point
format. The width value has a four bit unsigned exponent, and a three bit mantissa, whose
top bit is implicit, and which has the point after the implicit top bit. This is similar to a cut

©1992 Flare Il Limifed 12 June, 1892

JAGUAR </

Jaguar Technical Reference Manual Page 69

down version of the IEEE single precision format without the sign bit. It must give a whole
number of phrases in the current pixel size. Valid exponent values are in the range 0-11.

For example, a window width of 640 is 1010000000 binary, i.e. 1.01 x 2*9. Therefore the'
mantissa takes the value 01 (implicit top bit), and the exponent 1001. The width is therefore
1001 01 in binary.

Note that there is a window bounds clipping mechanism for the A1 pointer, which treats the
X and Y as signed sixteen bit values. This is described elsewhere.

Pointer Updating

Both blitter address generators can update their pointers so that they describe a raster scan
over a rectangle. Along a scan line, the pointer may be updated either by one pixel or to the
next phrase boundary, depending on how the blitter is currently operating. Refer to the Data
Path section for further details.

At the end of a scan line, the pointer is updated by a step value, which is the distance in X
and Y to the start of the next scan line. This action of scan across the block, then step to the
next start, is controlled by the blitter's inner and outer control loops, the inner loop traversing
a scan line, and the outer loop adding the step value. Thus the inner loop length is the block
width, and the outer loop length the block height.

In addition to these modes, both address registers have certain special modes.

A2 may have a boolean mask applied to its pointer. This is logically ANDed with the pointer,

S - so that the pointers may not exceed the bounds of a rectangle, whose sides are a power of
two pixels long. This is intended to repeat a source texture or pattern over a larger destination
area, e.g. filling a wall with a repealed brick pattern

A1 supports address updates based on a Digital Differential Analyzer. This technique
produces successive address by adding an increment to the pointers, both of which have
integer and fractional parts, and is used in particular for line-drawing and rotating images.

The pointer and increment of A1, in both X and Y, have sixteen bit integer parts and sixteen
bit fractional parts. The step value used on the outer loop address update also has integer
and fractional parts.

©1992 Flare I Limijted 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 70

7.4 Data Path

~ The blitter has a sixty-four bit data path, with a variety of registers. It can be used to process
entire phrases at once, or one pixel at a time. Pixels may the one, two, four, eight, sixteen
or thirty-two bits wide, and are always stored in a packed manner.
Data registers are:
00402240 |Source data, or computed intensity fractional parts
00402248 |Destination data
00402250 [Destination 2%
00402258 |Source Z1, or computed Z integer parts
00402260 {source Z2, or computed Z fractiocnal parts
00402268 |Pattern data, or computed intensity integer parts
00402270 |[Intensity increment
00402274 |Z increment
When writing or copying pixels, arbitrary alignment of the source and destination data is
allowed, and the blitter aligns the source to match the destination data when required. When
transferring phrases the source and destination address pointers do not need to be aligned
to the same point in a phrase, the blitter will automatically align the source to the destination,
. but only for pixels of eight bits or larger.
There are therefore two source data registers, to provide current source and previous source
for alignment. There is also a destination data register, which can be logically combined with
the source, and is also used {o restore the destination data area when only parls of it are
updated.
There is a parallel mechanism for Z data, used for Z-buffering. This allows the depth of the
data about to be written to be compared with the depth of the data already present on the
screen, and the write of the new data inhibited if the data already present has a higher priority.
This applies to sixteen bit pixel mode only.
There are therefore two source Z registers and a destination Z register.
"

©1992 Flare If Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 71

- source Z
- computed Z

The GOURZ flag selects computed Z data.

Overmriding both these selections is a mechanism to write back unchanged destination data.
If a mode is enabled where data may be inhibited, e.g. bit-to-byte expansion, or Z buffering,
then a pre-read of the destinaticn data should be performed. This also applies 1o pixel sizes
of less than eight bits.

Data Comparators
There are three data comparators available within the blitter. These are:

- The bit comparator. This is used for bit to pixel expansion, and selects a bit or group
of bits from the source data register, using a counter which is cleared every time the
tinner loop is entered. The bit is then used to control whether a pixel is written at the
current location.

- The Z comparator. This is used in 16-bit pixel mode to compare the 16-bit un-signed
integer Z attribute of a pixel on the screen with that about to be written, and to prevent
the write operation if the pixel on the screen has a higher priority.

- The data comparator. This is used to provide a means to make block copies with
transparent colours, and to help with flood fill by performing searches. it compares
pixel values in either 8 or 16-bit pixel modes.

The comparators may be used to achieve three effects:

- When painting pixels one at a time a comparator output can be used 1o inhibit the write
of a pixel, leaving the previous value unchanged.

- When painting pixels a phrase at a time, the comparator outputs can force destination
data to be written back. If this has been previously read then the data will be left
unchanged, if not then a background colour can be used, stored in the destination data
register

- The action of the blitter can be stopped altogether. This may be used for collision
detection, searching, efc.

Note that the bit comparator can only produce a mask to operate over an entire phrase in 8-bit
pixel mode.

7.5 Bus Interface

©1992 Flare Il Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual Page 72

The blitter accesses memory through the 64-bit co-processor bus, and takes full advantage
of the width and high-speed of this bus. The blitter will normally cycle this bus at a rate limited
only by the speed of the external memory, although there is a one-tick overhead when turning

T round from a read to a write transfer.
All external memory is viewed by the blitter as being phrase wide - if the physical layout is
narrower then the memory controller expands the transfer into the appropriate number of
transfers.
The blitter requests the bus at the start of an operation, and will not stop requesting it until the
entire operation is complete. As described elsewhere, higher priority bus masters can request
and be granted the bus during a blitter operation, and this will suspend blitter operation until
the higher priority operation has released the bus.

.

©1992 Flare Il Limited 12 June, 1892

JAGUAR <™

Jaguar Technical Reference Manual : Page 73

7.6 Register Description

The following is a list of all the externally accessible locations within the blitter. The data
registers may only be written to while the blitter is idle.

Address Registers

All address registers are 32-bits unless otherwise indicated. The addresses given are byte
offsets from the base of the GPU area.

A1 Base Register
00402200 Write only

32-bit register containing a pointer to the base of the window pointer to by A1. This address
must be phrase aligned.

A1 Flags Register
00402204 Wirite only
A set of flags controlling various aspects of the A1 window and how addresses are updated.

Bits Name Description

.- ' 0-1 Pitch The distance between successive phrases of pixel data in the
window data structure. Gaps may be used to provide
alternate pixel maps for double-buffering, for Z data, and for
other control information. The distance between two
successive phrases of pixels is given by two to the power of
this value; i.e. a pitch of 0 means pixel data phrases are
contiguous, 1 means 1 phrase gaps, 2 means 3 phrase gaps,
and 3 means 7 phrase gaps,

2 unused

3-5 Pixel size The pixel size, where the actual pixel size is 2%n, n is the
value stored here. Values 0-5 are allowed.

6-8 Z offset This value gives the offset from a phrase of pixel data of its
corresponding Z data in phrases. Values of 0 and 7 are not
used.

9-14 Width This width is distinct from the width in pixels stored in the
window register, and is the width used for address generation.
The width is a six-bit floating point value in pixels, with a four
bit unsigned exponent, and a three bit mantissa, whose top bit
is implicit, and which has the point after the implicit top bit.
This is similar to the IEEE single precision format without the
sign bit. It must give a whole number of phrases in the
current pixel size.

©1992 Flare Il Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manuaf Page 74

16-17 X add ctrl, These control the update of the X pointer on each pass round
the inner loop. Values are:
06 Add phrase width and truncate to phrase
~— boundary (sets phrase mode).
o1 Add pixel size, effectively add one,
10 Add zero
11 Add the increment
18 Y add ctrl. This bit controls how the Y pointer is updated within the inner

loop. It is overridden by the X control bits if they are in add
increment mode.

0 Add zero
1 Add one
19 X sign This bit may be set in conjunction with the X add pixe! size

mode to make the operation subtract pixel size. It should not
be set with other modes.
20 Y sign Makes the Y add one mode into Y subtract one,

A1 Window Size
00402208 Write only

This register contains the size in pixels, and is used for optionally clipping writes into the A1
window, so that if the pointer leaves the window bounds no write is performed. The width is
an unsigned fifteen bit value in the low word, the height an unsigned fifteen bit value in the
high word. The top bits of each word are ignored.

“— The window origin (0,0) is always at the top left hand corner of the screen, and so clipping is
performed when the pointer values are negative, or when the pointer values are greater than
or equal to these values.

A1 Window Pointer

0040220C Read/\Write

This register contains the X (low word) and Y (high word) pointers onto the window, and are
the location where the next pixel will be written. They are sixteen-bit signed values.

A1 Step Value
00402210 Write only

The step register contains two signed sixteen bit values, which are the X step (low word) and
Y step (high word). These may be added to the X and Y pointer on each pass round the
outer loop, between passes through the inner loop.

When calculating the step value for phrase-mode blits, note that the X pointer will be left
pointing at the start of the first phrase not written by the blit.

©1992 Flare II Limited 12 June, 1992

JAGUAR 7™

Jaguar Technical Reference Manual Page 75

A1 Step Fraction Value

00402214 Write only

The step fraction register may be added to the fractional parts of the A1 pointer in the same
manner as the step value. This is used when A1 is being used to scan over the source of a
rotated image.

A1 Window Pointer Fraction

00402218 Read/Write

This register contains the fractional parts of the pointer when A1 is being used to implement
a D.D.A. based address generator, for line-drawing, etc. The X part is in the low word, and
the Y part in the high word.

A1 Pointer Increment

0040221C Wirite only

The increment is added to the pointer value within the inner loop when the address update
is in add increment mode. This register contains the integer parts of the increment, and the
X part is in the low word, and the Y part in the high word.

A1 Pointer Increment Fraction

e 00402220 Write only

This is the fractional parts of the increment described above.

A2 Base Register

00402224 Write only

32-bit register containing a pointer to the base of the window pointer to by A2. This address
must be phrase aligned.

A2 Flags Register
00402228 Write only

A set of flags controlling various aspects of the A2 window and how addresses are updated.

Bits Name Description

0-1 Pitch As A1,
2 unused

©1992 Flare Il Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manual Page 76

3-5 Pixel size As A1,

6-8 Z offset As A1,

9-14 Width As A1,

N 15 Mask Enables boolean AND masking of the A2 pointer by its window :

register.

16-17 X add ctrl. These control the update of the X pointer on each pass round
the inner loop. Values are:
00 Add phrase width (truncate to phrase boundary)
01 Add pixel size {(effectively add one)
10 Add zero

18 Y add ctrl. This bit controls how the Y pointer is updated within the inner
loop.
0 Add zero
1 Add one

19 X sign This bit may be set in conjunction with the X add pixel size

mode to make the operation subtract pixel size. It should not
be set with other modes.
20 Y sign Makes the Y add one mode into Y subtract one.

A2 Window Mask
0040222C Write only

This register is used as the window size only in the sense that it may be used to AND mask
the pointer register when the Mask flag is set.

A2 Window Pointer

00402230 Read/Write
This register contains the X (low word) and Y (high word) pointers onto the window, and are
the location where the next pixel wili be written. They are sixteen-bit signed values.
A2 Step Value
00402234 Write only
The step register contains two signed sixteen bit values, which are the X step (low word) and
Y step (high word). These may be added to the X and Y pointer on each pass round the
outer loop, between passes through the inner loop.
When calculating the step value for phrase-mode blits, note that the X pointer will be left
pointing at the start of the first phrase not written by the blit.

-

©1992 Flare II Limited 12 June, 1992

JAGUAR /™

Jaguar Technical Reference Manual Page 77

Conirol Registers
\ Command Register
00402238 Write only

This register describes the operation of the blitter. A write 1o this register initiates blitter
operation, so it should be written to last when setting up a blitter command. Control bits are:

Bit Name Description

Bits 0-5 enable corresponding memory cycles within the inner loop. Destination write cycles
are always performed {subject to comparator control}, but all other cycle types are optional,

0 SRCEN Enables a source data read as part of the inner loop
operation,

1 SRCENZ Enables a source Z read as part of the inner loop operation.
This bit is ignored unless SRCEN is set.

2 SRCENX Enables an "extra" source data read at the start of an inner

loop operation. This is necessary where data has to be re-
aligned, and may also sometimes be of use in bit-to-pixel
expansion. If SRCENZ is set an extra Z read is also
performed.

3 DSTEN Enables a destination data read as part of inner- loop
operation. This must always be performed for pixels smaller
than 8 bits, where part of the destination data write will need
to restore the data that was previously there.

4 DSTENZ Enables a destination Z read as part of inner loop operation.
e . 5 DSTWRZ Enables a destination Z write as part of inner loop operation.

8 DISO_A1 Enables clipping when the A1 pointer lies outside its window
boundaries. This has the effect of inhibiting destination writes
within the inner loop, but blitter operation will continue.

7 NOGO Diagnostic use only, prevents wiite to the command register
starting the blitter. Set to zero.

Bits 8-10 enable address updates within the outer loop. These should only be enabled when

required as there is a one-tick overhead per updafe. .

8 UPDA1F Add the fractional part of the A1 step value to the fractional
part of the A1 pointer between inner loop operations in the
outer loop.

9 UPDA1 Add the A1 step value to the A1 pointer between inner loop
operations in the outer loop.

10 UPDAZ Add the A2 step value to the A2 pointer between inner loop
operations in the outer loop.

11 DSTAZ2 Reverses the normal roles of the address registers from A1 as
destination and A2 as source to A2 as destination and A1 as
source.

12 GOURD Enable Gouraud shaded data updates within inner loop, i.e.
the intensity gradient fractional part, repeated four times, is
added to the computed intensity fraction register (a.k.a.
destination data), then the intensity gradient integer part is

Sy

©1982 Flare Il Limited 12 June, 1992

JAGUAR “-7*

Jaguar Technical Reference Manual Page 78

added with the carry from the previous add to the computed
intensity value register (a.k.a. pattern data).

13 GOURZ Enable polygon Z data updates within the inner loop, i.e. add
Z fractions to the Z fraction register (source Z 2), then add
with carry the Z integer part to the Z integers (source Z 1).

14 TCPBEN Enable carry into the top byte of the intensity integers in
Gouraud data updates (leave clear for CRY mode).
15 TOPNEN Enable carry into the top nibble of the intensity integers in

Gouraud data updates (leave clear for CRY mode).

Bits 16-17 select alternative write data - the default source is the Logic Function Unit, whose
output is controlled by the LFUFUNC bits.

16 PATDSEL Select pattern data as the wiite data.

17 ADDDSEL Diagnostic purposes only,

18-20 ZMOCDE These bits give the conditions under which the Z comparator
generates an inhibit. Setting them all to zero disables the Z
comparator.
bit O source less than destination
bit 1 source equal to destination
bit 2 source greater than destination

21-24 LFUFUNC The bits control the data produced by the logic function unit.
The output is the boolean OR of the following minterms:
bit 0 NOT source AND NOT destination
bit 1 NOT source AND destination
hit 2 source AND NOT destination
bit 3 source AND destination

25 CMPGST Make the pixel value comparator compare destination data
with pattern data rather than source data with pattern data.

26 BCOMPEN Enable write inhibit on the output from the bit comparator.

This works pixel by pixelin any size, but over whole phrases
only on 8 bit pixels.
27 DCOMPEN Enable write inhibit on the output from the data comparator.
28 BKGWREN When a write inhibit occurs, this flag enables the blitter to still
perform the write, but to write back destination data. This only
applies to pixel mode, in phrase mode destination data is
always written.

Status Register
00402238 Read only

This register is present largely for diagnostic purposes when chip testing. The outer loop IDLE
bit may be polled to determine whether the blitter has completed,

0 NOWRITE
1 STOPPED
2 inner IDLE
3 inner SREADX
4 inner SZREADX
®1992 Flare Il Limited 12 June, 1992

JAGUAR "¢

Jaguar Technical Reference Manual Page 79

inner SREAD
inner SZREAD
inner DREAD
inner DZREAD
inner DWRITE
10 inner DZWRITE
1 outer IDLE

12 outer INNER

13 outer ATFUPDATE
14 outer ATUPDATE
15 outer AZUPDATE
16-31 inner count

Do~

Counters Register
0040223C Write only

The low word is the number of iterations of the inner loop operation. This is a sixteen bit
value which reloads the inner loop counter on each entry to the inner loop.

The high word is the number of iterations of the outer loop. This is a sixteen bit value which
is loaded directly into the outer loop counter.

Data Registers
All data registers are sixty-four bits, unless otherwise noted.
N Source Data Register
00402240 Write only
The source data may be pre-loaded with data for bit-to-byte expansion. The source data

register also serves to hold the four sixteen bit fractional parts of intensity when computing
Gouraud shaded intensity.

Destination Data Register

00402248 Write only

©171992 Flare Il Limited 12 June, 1992

JAGUAR <7

Jaguar Technical Reference Manual Page 80

Destination Z Register

00402250 Write only

Source Z Register 1

00402258 Write only

The source Z register 1 is also used to hold the four integer parts of computed Z.
Source Z Register 2

00402260 Write only

The source Z register 2 is also used to hold the four fraction parts of computed Z.
Pattern Data Register

00402268 Write only

The pattern data register also serves to hold the computed intensity integer parts and their
associated colours. ‘

Intensity Increment
00402270 Write only

This thirty-two bit register holds the integer and fractional parts of the intensity increment used
for Gouraud shading.

Z Increment
00402274 Write only

This thirty-two bit register holds the integer and fractional parts of the Z increment used for
computed Z polygon drawing.

7.7 Modes of Operation

This section discusses some of the typical modes of operation of the Blitter. It is by no means
a complete guide to all possible modes, but will show how to do certain common operations.
This is the best way to learn how to use the blitter.

Throughout this section, flags in flags registers that are not mentioned should always be set
to zero. Registers that are not mentioned need not be set up.

©1992 Flare Il Limited 12 June, 1992

JAGUAR -7

Jaguar Technical Reference Manual Page 81

Block Moves

The simplest of all blitter operations is a block move, copying one area of memory onto
another. The blitter will perform this operation one phrase at a time, and it is therefore a very *
rapid way of transferring data.

The source address of the data should be stored in the A2 base register, and the destination
address in the A1 base register. if these are not phrase aligned addresses then they should
be rounded down to a phrase boundary, and the offset (in the pixe! size sel) from the phrase
boundary written into the X pointer. The Y pointer should be set to zero.

The length of the block should be stored in the inner counter - the number represents the
number of pixels, so the largest block that can be copied is 65536 pixels, where 32-bit pixels
are set this is 256K. For smaller blocks it is usually easier to work in bytes. The outer
counter should be set {o one.

The blitter needs to be told how to update the pointers after each read and write cycle, so the
add control bits are set to zero to indicate phrase mode in both address flags registers.

Having set these, a command is stored in the command register, with the SRCEN bit set to
enable source reads, and the LFUFUNC bits set to 1100 to select source data.

Example

Consider copying 66 bytes from address 02003457 hex to address 0200789A. The following
values, in hex, would be written into the blitter command registers.

BLIT AlBASE 020903450 Rounded down to phrase boundary

BLIT AlFLAGS 000Ce018 Pixel size is 3, phrase mode
BLIT AlPTR 00000007 Offset from phrase base
BLIT_AZBASE 02007848 Rounded down Lo phrase boundary
BLIT_ AlFLAGS aouuo0ls Pixel size is 3, phrase mode
BLIT_R1PIR aunaonaz Offset from phrase base
BLIT COUNT [EY Length in X, 1 in Y
BLIT CMD Orsoongl SRCEN, and LFUFUNC iz 1100
N
©1992 Flare Il Limitec! 12 June, 1982

JAGUAR ™

Jaguar Technical Reference Manual Page 82

Rectangle Moves

Rectangle moves are very like block moves, but use a two-dimensional data set rather than
the one-dimension of a block operation. This brings in various new concepts. ;

A two-dimensional array of pixels is stored in memory as a linear array of phrases. This will
usually be the data field of a bit-mapped object. The blitter has to know the width of this
window of pixels. As an address in the window, in pixel terms, is given by the X pointer plus
the width times the Y pointer; a multiply operation is necessary to compute the address. To
avoid the need for a hardware muitiplier in the blitter address generator, the width is rather
strangely encoded.

Blitter window width is expressed as a floating-point number. The actual value has a four-bit
exponent and a three-bit mantissa, whose top bit is implicit. This aliows blitter window widths
to be any value whose binary form has no more than three significant digits followed by some
number of zeroes.

As an example, here are how various window widths encode:

Value Binary Floating Encoded
~-point

20 10100 1.061 x 2~4 0100 01

80 1010000 1.01 x 2”6 0110 01

128 10000000 1.00 x 2°7 0111 900

640 1010000000 1.01 x 29 1001 01

3584 111000600000 1.11 x 2~11 1011 11

The largest width value allowed is the last value one in this table - the smallest width is one
phrase in the current pixel size. The width must always be a whole number of phrases in the
current pixel size.

Rectangles are blitted like a raster scan, i.e. a line of pixels is transferred, then the pointer
advances one line and transfers the next scan line of the rectangle. This jump from the end
of one fine to the start of the next is given by the step value. If pixels are being transferred
one at a time, then the step value for X is the window width minus the rectangle width. If
pixels are being transferred one phrase at a time, then the X pointer is left pointing at the start
of the next phrase after the end of the block, and so the step value should be reduced
accordingly.

Example

Copy a block of pixels from a linear array at 0603AAB8 to a 30 x 30 pixel rectangle at offset
(315, 17) in a window 320 pixels wide and 200 high at 070C0000 of 16-bit pixels.

This will also introduce the idea of clipping. Clipping may be performed by the A1 address
generator, and simply prevents writes occurring at addresses outside the window boundaries,
i.e. X or Y either negative or grater than the window size. The window size is programmed
in the A1 window size registers. This is not much faster than writing the clipped pixels, so if

©1992 Flare Il Limited 12 June, 1992

JAGUAR “/™C

Jaguar Technical Reference Manual Page 83

a large number of pixels are to be clipped then it is worth performing the clipping at a higher
level,

Set up A1 to point at the target window, thus: i

BLIT_A1BASE 070C0000 Window base address

BLIT AlFLAGS 00004220 Pixel size = 4 :
Width = 320 = 1.01 x 278 = 1000 01
X add contrel = 0 for phrases

BLIT AIWIN 00C80140 Window size for clipping
BLIT ALPTR G0110313B Start positiocon
BLIT_AlSTEP 0001FFDF Y step is 1, X step is given by 315 - end position. ¥ polnter

ends at 315 + 30, rounded up to the next phrase boundary, i.e. 345
rounded to 348, so X step is -33.

Set up A2 to point at the source data - as this is a linear array only X is incremented:

BLIT_AZBASE 0603AAGR
BLIT A2FLAGS 00000020 Pixel size = 4

¥ add contreol = 0 for phrases
BLIT_AZPTR 00000000

Then the command and counter

BLIT COUNT 001EQO01E Rectangle size
BLIT CMD G1800241 Set SRCEN
- Set DISO_Al to enable clipping
Set UPDAT to add step value
Set LFUFUNC to 1100

Note that this makes two assumptions about the linear array being used for source data; firstly

that it is phrase aligned, and secondly that it is smaller than 84K pixels. If it was larger, then

due 1o X pointer size limitations, it would have to be set up as a window, and would be subject
" to the window restrictions.

®1982 Flare I Limited 12 June, 1992

JAGUAR PR

Jaguar Technical Reference Manual Page 84

Character Painting

Character painting is a particular example of a class of operations requiring bit to pixel

~ expansion. As well as character painting, this may include such things as background *
patterns, simple texture fills, etc.
When bit to pixel expansion is being performed, the source data is used as a bit mask. Bits
are extracted from the source data and if they are set then the corresponding pixel is painted
in the currenlly selected output data form, if the bit is clear then either the pixel is left
unchanged, or a background colour is written.
This allows character painting to paint the characters only, leaving the background unchanged
(if the destination data is read), or with another colour written to the 'paper areas (pre-loaded
into the destination data register which is not read in the inner loop).
Character painting can be performed one pixel at a time in all screen modes, and can also
be performed one phrase at a lime in eight and sixteen bit per pixel modes.
The bit selection counter is reset every time the inner loop is left, so bit packed data patterns
may be up to 64 pixels wide.
Example
Consider painting an 8x8 character on an 8-bit per pixel window.

~—

\\u"

©1992 Flare Il Limited 12 June, 1992

JAGUAR -7/

Jaguar Technical Reference Manual Page 85

Image Rotation

The blitter can rotate and scale images as a single operation.

Consider taking a rectangular image and rotating it into a window.

- The bounding reclangle of the rotated image is calculated in the destinalion window.
- This rectangle is then transformed into the source image co-ordinate system.

- A2 is used as the destination address register and performs a raster scan over the
bounding rectangle, pixel-by-pixel. The width and height of the blit are given by the
size of this bounding rectangle.

- A1 performs a scan over the source image, with the increment integer and fraction set
up to describe a scan over the first line of the translated bounding rectangle. The step
and fraction parts then translate it to the start of the next scan.

- Clipping is generated when A1 is outside the bounds of the source image, so that
writes at A2 will only be enables when A1 lies within the bounds of the source image,
clipping the rotated form correctly.

!l picture here

Consider as an example, a 12 pixel square image starting at {10,10) in a window. We would
like to rotate this image clockwise by 30 degrees, make it larger by a factor of 1.3, and move
. it across by 30 pixels.

The image is stored in some RAM at 02000000h, in a window 112 pixels wide, and the object
mode is 8 bits per pixel.

First it is necessary to transpose the square’s co-ordinates into the target co-ordinate system.
The basic program below shows how to do this:

»
106 degl3o = _S23085770
110 PRINT "Co-crdinatesz ™
120 INPUT i, yi

130 = = #i - 1%

140 v = vi - 1%

150 x5 = (x + CO3 {deg30)) - (y ~ SIN{deg30))

160 ys = (; * SIN({degq3()) + {y * COS (deq30)}

170 x = x5 * 1.3

180 y = ys * 1.3

180 x = 5 + 46

200 y =y + 186

210 PRINT "Translated: ", INT{: + .3}, INT(y + .5)

This translates the vertices of the square as follows:

(10,10) -> (43,5)

(21,10} -> (56,12)
{21,21) -> (48,25}
(10,21} -> (36, 18)

©1992 Flare !l Limited 15 June, 1962

JAGUAR “7*R

Jaguar Technical Reference Manual Page 86

The bounding box is therefore from X = 36 to 56, and Y = 5 to 25. The vertices of this are
then translated back to the source co-ordinate system, as shown by another basic program:

- 100 degm3d = -.523598775 .
110 PRINT "Co-ordinates? "
120 INPUT xi, yi
130 x = xi - 46

140 v = yi - 16

150 x = x / 1.3

160 y =y / 1.3

170 x5 = (x * COS(degm30)} - {y * SIN(degm30})

180 ys = (x * SIN(degm30)] + [y * COS(degm30})

190 x = x5 + 16

200 y = ys + 16

210 PRINT "Reverse translated: ", INT(x + .5), INT{y + .5)

This translates the vertices of the bounding box as follows:

(36,5) -> (5,13)

{56,35) ->» ((18,5}
{56,25) -> (26,18}
{36,25) -> (13,26}

We then set up A1 as the source address register, making its window base the top left hand

corner of the source image, and its window size the image size. The A1 pointer will traverse
the translated bounding box.

! more to come

©171992 Flare If Limited 15 June, 1692

JAGUAR /™

Jaguar Technical Reference Manual Page 87

Gouraud Shading and Z-Buffering

_ Gouraud shading is a simple technique for modelling lit curved surfaces, which are
represented by a series of polygons. To make the surface appear curved, the intensity must
vary smoothly, rather than being uniform over each polygon. Gouraud shading approximates
to the appearance of the curved surface by computing the intensity at each vertex, using a
vertex normal, and some suitable ilumination model. The vertex intensity is then linearly
interpolated across the polygon edges, and the edge intensities are linearly interpolated across
the polygon scan lines.

Gouraud shading is only an approximation to the appearance of the curved surface, and may
appear unnatural where there are large intensity changes across single polygons. However,
it is much more attractive than not graduating the shading at all. Better shading can be
achieved with Phong shading, where the normals are interpolated, but this is much more
computationally intensive, and is not feasible within the blitter.

Z-buffering involves attaching a Z value altribute to each pixel, which corresponds to how far
away it is from the observer. When pixels are drawn on the screen, their Z values can be
compared with the Z of the pixels already there, and the existing data preserved if closer to
the observer. Z-buffering therefore provides a simple means of achieving hidden surface
removal.

The blitter can perform Gouraud shading and Z-buffering in sixteen bit pixel mode only. Each

blit creates one scan line of a polygon, with the graphics processor responsible for re-

calcuiating the start, length and gradient parameters for each scan line. Four pixels and their

associated Z values can be calculated as fast as the memory interface can wrile them out,
- so-the bus rate is always the limiting factor.

To calculate the Z and intensity values, the blitter contains registers which represent the Z and
intensity with a sixteen bit integer and sixteen bit fractional part. The intensity integer also
contains the colour value, so intensity is prevented from overflowing info the colour
information. The TOPBEN and TOPNEN bits enable this overflow, if desired.

There are four of these thirty-two bit values for intensity, and four for Z, so that four pixels may
be caiculated in parallel. There are also thirty-two bit Z and intensity increment registers,
which give the amount added to each pixel for each write.

At each pass round the inner loop; the sixteen-bit fractional part of the intensity increment is
added to the fractional parts of the intensity values, held in the source data register. Then the
eight-bit integer part of the intensity is added with carry out of the fractional add to the integer
pixel values in the patlern data register. Carry is prevented from propagating from intensity
to colour. A similar mechanism governs Z.

Both the intensity and the Z values saturate. This means that if they reach their lowest or
highest values they are clipped there, rather than wrapping round. For example, adding one
to a Z value of FFFF hex will give FFFF, not the overflow result 0000

©1992 Flare Il Limited 135 June, 1992

JAGUAR -7/*

Jaguar Technical Reference Manual Page 88

To take an example, consider blitting an 18 pixel strip of Gouraud shaded Z-buffered pixels,
The blitter command registers would be programmed as follows (all other registers need not
be written).

Address registers are set up as follows:

Al_BASE 0x01600000 The window base address

Al_PITCH 1 Pixel data and Z dara alternate

Al _PSTZE 4 16-bit pizels

Al_ZOFFS 1 Zodata iz oner phrase up from pizel data
Al WIDTII 1] J-pizel wiielaws 1001 2 274 0 0100 01
MADDC v Aedd e phitasie Lo addless

Al WIN X 24 Window width

Al WIN Y 5 Window height

Al _PTR X 1 Fivrst pixel at address 0,1

Al PTR_Y 0

Data registers are set up assuming the first pixel has an intensity of C7.2833, and a colour
of 00. The intensity gradient is minus 15.9265. The values for the first four pixels have to be
set up (the left-most is actually off the edge of the strip, so the intensity gradient is subtracted
from it). Similarly, the Z of the first pixel is E7E7.E000, and the Z gradient is minus
1818.1FFF.

Pattern 00DCAOCTOORI0GGC Intenzify integer parts and colour data
Source FEDCEACIDAERICIEOC Intenzity fractions

Source Z1 FEEFETE7CFCFB7R7 Z integer parts

Source Z2 FEFFEQUOCOIIAQD? % fracticnal parts

I Inc FFAYBEGC Intensity increment {four times minus 15.9265)
2 Inc 9F9F8004 Z increment (four times minus 1818.FFFF)

Control information is set up as follows:

Inner count 18 Strip width

Outer count 1 Singlz pirel high strip

DSTEN 1 Read destination data,to restore if necessary

DSTENZ 1 Read destination Z, to compare with computred 7

DSTWRZ 1 Write destinatiom Z, restoring or replacing

DISG Al 1 Clip within window

GOURD 1 Gouraud data computation enabled

GOURZ 1 Lobuffer dats computation enzbled

PATDSEL 1 Write pattern data

ZMODE 3 Overwlite existing data if the new 2 value is greater than or

efual to the existing 2 value

The numbers here are pretty arbitrary, but they show the general idea.

©1892 Flare Il Limited 15 June, 1992

JAGUAR 7R

Jaguar Technical Reference Manual Page 89

8 Appendices

~— 8.1 Data Organisation - Big and Little Endian

The Jaguar system is intended to be useable in either a little-endian, e.g. Intel 80x86, or big-
endian, e.g. 680x0, environment. The difference between these two systems is to do with the
way in which bytes of a larger operand are stored in memory.

When storing & long-word in memory, a big-endian processor considers that the most
significant byte is stored at byte address 0, while a little-endian processor considers that the
most significant byte is stored at byte address 3. When both 32-bit processors are fitted with
32-bit memory this is not an issue for the memory interface, as the concep! of byte address
has no meaning; where it does become a problem is when the data path width is narrower
than the operand width.

This document adopts the big-endian convention and Motorola operand ordering convention.
Little-endian and Intel operand conventions could equally well have been applied.

IO Bus Interface

The 10 Bus Interface is a 16-bit interface. Therefore, 32-bit data such as addresses will be

presented differently between the little-endian and big-endian systems. What happens, in

effect, is that the sense of A1 is inverted between the two systems. A big-endian system will

see the high word of long-word at the low address, a litlle-endian system will see the high
- word at the high address.

Co-Processor Bus Interface

As the co-processor bus interface is 64-bits wide, there is no problem regarding big and little
endian systems, although graphics processor programmers should always use byte, word, or
long-word transfers as appropriate to the operand size to avoid having to be aware of whether
the CPU is big or little endian. .

Pixel Organisation

One side effect of the big or little endian philosophies is with regard to the organisation of
pixels within a phrase.

©1992 Flare I Limited 15 June, 1992

JAGUAR 7%

Jaguar Technical Reference Manual Page 90

In the little-endian system, the left-most pixel is always the least significant. In a phrase of
data the left-most pixel includes bit 0. In byte address terms, this is in byte 0.

0 718 15(... 48 55|56 63

left right

in the big-endian system, the left-most pixel is always the most significant. The left-most pixe!
therefore always includes bit 63. [n byle address terms this is stored in byte 0.

63 56|55 48 ... |15 8:7]

left right

Consider an eight-bit per pixel mode:

- in pixel mode, the left-most pixel in both systems is at byte address 0.

- in phrase mode, the little-endian left hand pixel is on bits 0-7, the big-endian left hand
pixel is on bits 56-63.

(these modes refer 1o blitter operation, which is described elsewhere)

This difference therefore affects operations that involve addressing pixels within a phrase
when transferring a whole phrase at once (blitter phrasa mode).

®©1992 Flare Il Limited 15 June, 1992

JAGUAR /™

