
Computing the throughput
of probabilistic and replicated streaming applications∗

(Regular Submission)

A. Benoit1,∗, F. Dufossé1, M. Gallet1, B. Gaujal2, Y. Robert1

1. LIP (jointly operated by CNRS, ENS Lyon, INRIA and UCB Lyon), ENS Lyon,
46 Allée d’Italie, 69364 Lyon Cedex 07, France.

{Anne.Benoit|Fanny.Dufosse|Matthieu.Gallet|Yves.Robert}
@ens-lyon.fr

2. LIG (jointly operated by CNRS, Grenoble INP, INRIA, UJF and UPMF),
Grenoble, France.

Bruno.Gaujal@imag.fr

Abstract
In this paper, we investigate how to compute the throughput of probabilistic and replicated stream-

ing applications. We are given (i) a streaming application whose dependence graph is a linear chain;
(ii) a one-to-many mapping of the application onto a fully heterogeneous target, where a processor is
assigned at most one application stage, but where a stage can be replicated onto a set of processors; and
(iii) a set of I.I.D. (Independent and Identically-Distributed) variables to model each computation and
communication time in the mapping. How can we compute the throughput of the application, i.e., the
rate at which data sets can be processed? We consider two execution models, the Strict model where the
actions of each processor are sequentialized, and the Overlap model where a processor can compute and
communicate in parallel. The problem is easy when application stages are not replicated, i.e., assigned
to a single processor: in that case the throughput is dictated by the critical hardware resource. How-
ever, when stages are replicated, i.e., assigned to several processors, the problem becomes surprisingly
complicated: even in the deterministic case, the optimal throughput may be lower than the smallest in-
ternal resource throughput. To the best of our knowledge, the problem has never been considered in the
probabilistic case. The first main contribution of the paper is to provide a general method (although of
exponential cost) to compute the throughput when mapping parameters follow I.I.D. exponential laws.
This general method is based upon the analysis of timed Petri nets deduced from the application map-
ping; it turns out that these Petri nets exhibit a regular structure in the Overlap model, thereby enabling
to reduce the cost and provide a polynomial algorithm. The second main contribution of the paper is to
provide bounds for the throughput when stage parameters are arbitrary I.I.D. and N.B.U.E. (New Better
than Used in Expectation) variables: the throughput is bounded from below by the exponential case and
bounded from above by the deterministic case.

Keywords: scheduling, probabilistic streaming applications, replication, throughput, timed Petri nets.

* Corresponding author – Anne Benoit
LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
Phone: (+33) 4 72 72 87 58
Email: Anne.Benoit@ens-lyon.fr
∗Anne Benoit and Yves Robert are with the Institut Universitaire de France. This work was supported in part by the ANR

StochaGrid project and by the Inria ALEAE project.

1 Introduction

In this paper, we deal with streaming applications, or workflows, whose dependence graph is a linear chain
composed of several stages. Such applications operate on a collection of data sets that are executed in
a pipeline fashion [15, 14, 18]. They are a popular programming paradigm for streaming applications like
video and audio encoding and decoding, DSP applications, etc [6, 17, 20]. Each data set is input to the linear
chain and traverses it until its processing is complete. While the first data sets are still being processed by
the last stages of the pipeline, the following ones have started their execution. In steady state, a new data set
enters the system every P time-units, and several data sets are processed concurrently within the system. A
key criterion to optimize is the period, or equivalently its inverse, the throughput. The period P is defined
as the time interval between the completion of two consecutive data sets. The system can process data sets
at a rate ρ = 1/P , where ρ is the throughput.

The application is executed on a fully heterogeneous platform, whose processors have different speeds,
and whose interconnection links have different bandwidths. We assume that the mappping of the application
onto the platform is given, and that this mapping is one-to-many. In other words, when mapping application
stages onto processors, we enforce the rule that any given processor will execute at most one stage. However,
a given stage may well be executed by several processors. Indeed, if the computations of a given stage are
independent from one data set to another, then two consecutive computations (for different data sets) of
the same stage can be mapped onto distinct processors. Such a stage is said to be replicated, using the
terminology of Subhlok and Vondran [15, 16] and of the DataCutter team [4, 14, 19]. This also corresponds
to the dealable stages of Cole [5]. Finally, we consider two execution models, the Strict model where the
actions of each processor are sequentialized, and the Overlap model where a processor can compute and
communicate in parallel.

The major novelty of the paper is to introduce randomness in the execution of the application onto the
platform. Consider the computations performed by a given processor on different data-sets: we assume
that the execution times of the computations are random variables that obey arbitrary I.I.D. (Independent
and Identically-Distributed) probability laws. Similarly, we assume that the execution times of all the com-
munications taking place on a given interconnection link are random variables that obey arbitrary I.I.D.
probability laws. Note that the I.I.D. hypothesis apply to events (computations or communications) that
occur on the same hardware resource (processor or link), and does not restrict the heterogeneity of the ap-
plication/platform mapping. In other words, processors may well have different speeds, links may well have
different bandwidths, stages may well have different CPU and data volumes; furthermore, the distribution
law may well vary from one computation to another, or from one communication to another. To the best
of our knowledge, this paper is the first attempt to compute the throughput of a mapping whose parameters
obey probability distribution laws.

In the deterministic case, and without replication, the throughput of a given mapping is easily seen to
the dictated by the critical hardware resource: the period is the largest cycle-time of any resource, be it a
processor or communication link. However, when stages are replicated, the problem becomes surprisingly
complicated: even in the deterministic case, the optimal throughput may be lower than the smallest internal
resource throughput. This result was shown in [2], using a representation of the mapping based on timed
Petri nets. In this paper we build upon the latter construction to tackle the probabilistic case.

The first main contribution is to provide a general method (although of exponential cost) to compute the
throughput when mapping parameters follow I.I.D. exponential laws. This general method is based upon the
detailed analysis of the timed Petri nets deduced from the application mapping for each execution model,
Strict and Overlap. It turns out that the Petri nets exhibit a regular structure in the Overlap model, thereby
enabling to reduce the cost and provide a polynomial algorithm. The second main contribution of the paper
is to provide bounds for the throughput when stage parameters are arbitrary I.I.D. and N.B.U.E. (New Better
than Used in Expectation) variables: the throughput is bounded from below by the exponential case and

1

bounded from above by the deterministic case.
Our last contribution departs from the main trend of the paper and deals with the problem of determining

the optimal mapping, i.e., the one-to-many mapping that optimizes the throughput. Indeed, the optimal
mapping could enjoy a particular structure that renders the computation of the throughput easier than for an
arbitrary given mapping. It could even be polynomial for arbitrary laws and both the Strict and OVERLAP
models! We prove that this is in fact not the case: determining the optimal mapping is NP-complete, even
in the deterministic case and without any communication cost (hence for both models).

The paper is organized as follows. First in Section 2, we formally describe the framework and the
optimization problems, and we introduce the random variables that are used for the probabilistic study.
Then we explain how to compute the throughput when communication and computation times follow I.I.D.
exponential laws (Section 3). We give a general method which turns out to be of exponential complexity in
the general case, but we provide a polynomial algorithm for the Overlap model. Then in Section 4, we deal
with arbitrary I.I.D. and N.B.U.E. laws, and we establish the above-mentioned bounds on the throughput.
We assess the NP-completeness of the mapping optimization problem in Section 5. Finally, we present some
conclusions and directions for future work in Section 6.

2 Models

In this section, we first describe the workflow application, the target platform, and the communication
models that we consider (Section 2.1). The replication model is presented in Section 2.2 Before moving
to the probabilistic study, we recall existing results for the deterministic case in Section 2.3. Finally, we
give a detailed presentation of the random variables that we consider to model processor speeds and link
bandwidths (Section 2.4).

2.1 Application, platform and communication models

We deal with streaming applications, or workflows, whose dependence graph is a linear chain composed of
m stages, called Ti (1 ≤ i ≤ N). Each stage Ti has a size wi, expressed in flop, and needs an input file Fi−1

of size δi−1, expressed in bytes. Finally, Ti produces an output file Fi of size δi, which is the input file of
stage Ti+1. All these sizes are independent of the data set. Note that T1 produces the initial data and does
not receive any input file, while Tm gathers the final data.

The workflow is executed on a fully heterogeneous platform withM processors. The speed of processor
Pp is denoted as sp (in flops). We assume bidirectional links linkp,q : Pp → Pq between any processor
pair Pp and Pq, with bandwidth bp,q bytes per second. These links are not necessarily physical, they can
be logical. For instance, we can have a physical star-shaped platform, where all processors are linked to
each other through a central switch. The time needed to transfer a file Fi from Pp to Pq is δi

bp,q
, while the

time needed to process Ti on Pp is wi
sp

. An example of linear chain application and fully connected target
platform is provided in Figure 1.

We consider two different realistic common models for communications. The Overlap model allows to
overlap communications and computations: a processor can simultaneously receive values for the next data
set, compute result for the current data set, and send output data for the previous data set. Requiring multi-
threaded programs and full-duplex network interfaces, this model allows for a better use of computational
resources. On the contrary, in the Strict model, there is no overlap of communications by computations:
a processor can either receive a given set of data, compute its result or send this result. This is the typical
execution of a single-threaded program, with one-port serialized communications. Although leading to a
less efficient use of physical resources, this model allows for simpler programs and hardware.

2

P2

P1

P3
P4

P5

P6

P7

T2
F3F2F1

T4T3T1

P2

P1

P3
P4

P5

P6

P7

T2
F3,4F2,3F1,2

T4T3T1

Figure 1: Example A: Four-stage pipeline and seven-processor computing platform

T4T2
T2 T4T3

P7

P4

P5

P6

P3

P2
P1

T1
T1 T3F2 F3F1

P7

P7

P3

P2

P1

P1

P4

P4

P5

P7

P1

P1

P7

P7P6

P5

P6 P7

P2

P2

P3

P3P1

P1

Figure 2: Timed Petri net representing Example A.

5

Figure 1: Example A: Four-stage pipeline, seven-processor computing platform, mapping with replication.

2.2 Replication model

When mapping application stages onto processors, we enforce the rule that any given processor will execute
at most one stage. But instead of considering one-to-one mappings [3], we allow stage replication, and
rather consider one-to-many mappings, in which each stage can be processed by several processors. This
is possible when the computations of a given stage are independent from one data set to another. In this
case, two consecutive computations (different data sets) for the same stage can be mapped onto distinct
processors. Such a stage is said to be replicated [15, 16, 4, 14, 19] or dealable [5].

Note that the computations of a replicated stage can be fully sequential for a given data set, what matters
is that they do not depend upon results for previous data sets, hence the possibility to process different
data sets in different locations. The following scheme illustrates the replication of a stage Tk onto three
processors:

. . . Tk−1

� Tk on P1: data sets 1, 4, 7, . . . �
−− Tk on P2: data sets 2, 5, 8, . . . −−
� Tk on P3: data sets 3, 6, 9, . . . �

Tk+1 . . .

For 1 ≤ k ≤ N , let Rk denote the number of processors participating to the processing of Tk. For
1 ≤ p ≤M , if Pp participates to the work of Tk, then we write p ∈ Teamk and define R′p =Rk. As outlined
in the scheme, the processors allocated to a replicated stage execute successive data sets in a round-robin
fashion. This may lead to a load imbalance: more data sets could be allocated to faster processors. But this
would imply out-of-order execution and would require a complicated data management if, say, a replicated
stage is followed by a non-replicated one in the application pipeline. In particular, large buffers would
be required to ensure the in-order execution on the non-replicated stage. This explains why round-robin
execution has been enforced in all the papers referenced above, and we enforce this rule too.

Because of the round-robin rule, the execution of a replicated stage is slowed down by the slowest
processor involved in the round-robin. Let Pslow be the slowest processor involved in the replication of Tk.
Then, if p ∈ Teamk, Pp processes one data set every Rk data sets at the speed dictated by Pslow, and thus
its computation time (per data set) is Ccomp(p) = wk

Rk×sslow
. Note that this implies that if processors of

different speeds are processing a same stage, some of them will remain partly idle during the execution.

2.3 Computing the throughput in the deterministic case

The throughput ρ is defined as the average number of data sets which can be processed within one time unit.
Equivalently, we aim at minimizing the period P , which is the inverse of the throughput and corresponds to
the time-interval that separates two consecutive data sets entering the system. We can derive a lower bound

3

for the period as follows. Let Cexec(p) be the cycle-time of processor Pp. If we enforce the Overlap model,
then Cexec(p) is equal to the maximum of its reception time Cin(p), its computation time Ccomp(p), and its
transmission time Cout(p): Cexec(p) = max {Cin(p), Ccomp(p), Cout(p)} . If we enforce the Strict model,
then Cexec(p) is equal to the sum of the three operations: Cexec(p) = Cin(p) + Ccomp(p) + Cout(p). Note
that in both models, the maximum cycle-time,Mct = max1≤p≤M Cexec(p), is a lower bound for the period.

If no stage is replicated, then the throughput is simply determined by the critical resource (maximum
cycle-time): ρ = 1/Mct. However, when stages are replicated, the previous result is no longer true, and
more sophisticated techniques are required. Here are the main results that we established previously in [2]:
• Model Overlap: the throughput can be determined in polynomial time.
• Model Strict: determining the complexity of this problem remains an open question. However, the

throughput can be computed in time O
(
lcm1≤i≤N (Ri)3

)
, a possibly exponential resolution time.

In the following, we investigate how to compute the throughput when execution and communication
times are subject to random variations.

2.4 Random variables

We consider in the following that the time to execute a stage, and the time to transfer data, are random
variables. Thus, in the deterministic case, we can denote the n-th computation time of stage Ti on processor
Pp by cp = wi/sp. Similarly, the n-th communication time of the file Fi sent by Pp to Pq is given by
dp,q = δi/bp,q.

Let Xp(n) be the random variable giving the actual computation time of the n-th data set processed by
Pp, where p ∈ Teamk (recall that each processor deals with only one stage). In the deterministic case, we
have Xp(n) = wk/sp for all n, but in the probabilistic setting the Xp(n) will be random variables obeying
I.I.D. laws. Similarly, let Yp,q(n) be the random variable giving the actual communication time of the n-th
file of type Fk transferred from Pp to Pq, where p ∈ Teamk and q ∈ Teamk+1. In the deterministic case, we
have Yp,q(n) = δk/bp,q for all n. Again, in the probabilistic setting, the Yp,q(n) will be random variables
obeying I.I.D. laws. Finally, we let (X,Y) denote the mapping of an application (T1, . . . , TN) on a platform
(P1, . . . , PM).

The probability that the computation time of Ti on Pp is larger than x is given by Pr (Xp(n) > x), while
its expected value is given by E[Xp(n)]. This definition is general and does not imply any special constraint
on the involved random variables. However, some of our results are only valid for specific classes of random
variables. Below we recall the definition of these specific classes:

Exponential variables. An important class of random variables is the one of variables with exponential
distribution. The probability that an exponential random variable X with a rate λ is larger than t is given by
Pr (X > t) = e−λt.

New Better than Used in Expectation variables. . . A random variable X is said to have a N.B.U.E.
distribution if, and only if, E[X − t|X > t] ≤ E[X], for all t > 0. In other words, the N.B.U.E. assumption
for communication or computation times means that if a computation (or a communication) has already been
processed for a duration t and it is not finished yet, then the remaining time is smaller than the processing
time of a fresh operation. This assumption is often true since in most cases, a partial execution of a stage
should not increase the remaining work, especially when the amount of computation and communication
are bounded from above. Note that exponential variables have the N.B.U.E. property, with equality in that
case (E[X − t|X > t] = E[X], for all t > 0). Also, note that there exist many statistical procedures to test
if a random variable is N.B.U.E. ([13]).

Independent and identically-distributed variables. A collection of random variables is said to be
independent and identically-distributed (I.I.D.) if each random variable has the same probability distribution
as the others and all variables are mutually independent. This assumption will hold true throughout the

4

paper: processing times {Xp(n)}1≤p≤M,n∈N and communication times {Yp,q(n)}1≤p,q≤M,n∈N always are
independent I.I.D. sequences.

3 Computing the throughput with exponential laws

In this section, we consider the case of exponential laws: all processing times and communication times
are exponentially distributed. In the corresponding Petri net, all transitions (modeling processing times or
modeling communication times) have exponential firing times. The probability of the firing time ti of a
transition is given by Pr (ti > x) = 1 − e−λix. The firing rate λi corresponds either to the processing rate
of one processor or the communication rate over one link.

The study of the exponential case is motivated by two facts. First, one can get explicit formulas in this
case. Second (as we will see in Section 4), exponential laws are extreme cases among all N.B.U.E. variables.

In the rest of this section, we first recall the design principles of the timed Petri net model (Section 3.1).
Then in Section 3.2, we explain the general method which allows us to compute the throughput for both
the Overlap and the Strict models. However, this general method has a high complexity. In the Overlap
case, we provide a simpler method, building upon the relative simplicity of the timed Petri net (Section 3.3).
Finally in Section 3.4, we derive a polynomial algorithm for the Overlap case when we further assume that
the communication network is homogeneous.

3.1 Timed Petri nets

As in [2], we model the system formed by a given mapping (of an application onto a platform) by a timed
Petri net. Here we briefly recall design principles:
• any path followed by the input data sets is fully developed into the timed Petri net (as a row); there

are R = lcm1≤i≤N (Ri) such rows;
• any computation or communication is represented by a transition, whose firing time is the same as the

computation time (respectively communication time); it appears on a column of the timed Petri net,
which has 2N − 1 columns;
• dependencies between two successive operations are represented by places between the transitions

corresponding to these operations.
The complete timed Petri nets representing Example A (Figure 1) with the Overlap and Strict models

are shown in Figure 2. There are four processing stages, thus three communications and a total of seven
columns. In the example, stages 1 and 4 are not replicated, while T2 (resp. T3) is replicated onto two (resp.
three) processors, as depicted in Figure 1. There are thus 2×3 = 6 lines in both Petri nets. The dependencies
depend upon the model (Overlap or Strict), and they enforce the round-robin distribution of data sets. Note
that in all cases, the timed Petri net is an event graph (each place has a single input transition and a single
output transition).

3.2 General method to compute the throughput

Theorem 1. Let us consider the system (X,Y) formed by the mapping of an application onto a platform.
Then the throughput can be computed in time O

(
exp(lcm1≤i≤N (Ri))3

)
.

We only present here the main steps of the complete proof, and the detailed proof can be found in
Appendix A:

1. model the system by a timed Petri net;
2. transform this timed Petri net into a Markov chain;
3. compute the stationary measure of this Markov chain;

5

P2

P1

P3
P4

P5

P6

P7

T2
F3,4F2,3F1,2

T4T3T1

Figure 1: Example A: Four-stage pipeline and seven-processor computing platform

T4T2
T2 T4T3

P7

P4

P5

P6

P3

P2
P1

T1
T1 T3F2 F3F1

P7

P7

P3

P2

P1

P1

P4

P4

P5

P7

P1

P1

P7

P7P6

P5

P6 P7

P2

P2

P3

P3P1

P1

Figure 2: Timed Petri net representing Example A.

5

P3

T1
T1 T2 T4T3 T3T2 T4

P7

P4

P5

P6

P2
P1

F1 F2 F3

P1

P1

P1

P2

P2

P3

P3

P3

P2

P4

P4

P5

P6

P5

P6

P7

P7

P7

P7

P7

P7

P1

P1

P1

Figure 3: Timed Petri net representing Example A, with Strict model.

A Proof of Theorem 1

Proof. First, we present the main steps of the complete proof:
1. model the system by a timed Petri net;
2. transform this timed Petri net into a Markov chain;
3. compute the stationary measure of this Markov chain;
4. derive the throughput from the marginals of the stationary measure.

Model the system as a timed Petri net. As said before, the transformation of the initial system into a
timed Petri net is fully described in [4] and we do not detail it here. This step is done in time O (Rm),
and the expectation of the delay between two successive firings of any transition gives the throughput of the
system.

Transformation of the timed Petri net into a Markov chain. To compute the expectation of the delay
between two successive firings of any transition, we transform the above timed Petri net into a Markov
chain (Z1, Z2, . . .). To each possible marking Mi of the timed Petri net, we associate a state xi. There
are (2m + 3(m − 1))R places, and each place contains either zero or one token. Thus, there are at most
2(2m+3(m−1))R possible different markings, leading to the same number of states in the Markov chain.

Due to the exponential size of the number of states of the Markov chain, we only consider the part of
the timed Petri net corresponding to communications in examples. This part is shown in Figure 3.

On Example A, places are named (P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12), while transitions
are named (a, b, c, d, e, f). Thus, a state is defined by a 12-uple, each number equal to either 0 or 1 being
the number of tokens in the place. In the Markov chain, moving from a state to another corresponds to the
firing of a transtion of the timed Petri net. Thus, arrows in the graphical representation of the Markov chain
are labeled with the names of the transitions. The complete list of possible states and the corresponding
transitions are given in Figure 4.

13

Figure 2: Timed Petri net representing Example A, Overlap and Strict model.

4. derive the throughput from the marginals of the stationary measure.

3.3 Overlap model

We now focus on the Overlap model. As in the deterministic case, constraints applying to our system form
a very regular timed Petri net which is feed forward (dependencies only from column Ci to column Ci+1,
for 1 ≤ i ≤ 2N − 2), giving an easier problem than the Strict model.

Theorem 2. Let us consider the system (X,Y) formed by the mapping of an application onto a platform,
following the Overlap communication model. Then the throughput can be computed in time

O

(
N exp(max

1≤i≤N
(Ri))3

)
.

Here again, due to a lack of space, we only give the overall structure of the proof, while we refer to
Appendix B for a detailed proof:

1. split the timed Petri net into columns Ci, with 1 ≤ i ≤ 2N − 1;
2. separately consider each column Ci;
3. separately consider each connected component Dj of Ci;
4. note that each component Dj is made of many copies of the same pattern Pj , of size uj × vj ;
5. transform Pj into a Markov chainMj ;
6. determine a stationary measure ofMj , using a combinatorial trick based on Young diagrams [12];
7. compute the throughput ofPj in isolation (called inner throughput of componentDj in the following);
8. combine the inner throughputs of all components to get the global throughput of the system.
Thanks to the regularity of the global timed Petri net, we split it into a polynomial number of columns,

and we compute the throughput of each column independently. This allows us to decrease the overall
complexity of the computation, similarly to the idea used in [2].

3.4 Overlap model, homogeneous communication network

In the case where all the communications times in one column are all I.I.D., with the same rate in compo-
nent Dj , denoted λj , then the inner throughput of each strongly connected component (i.e., the throughput
of the component if isolated from the global timed Petri net) can be computed explicitly with a very simple

6

formula. This reduces the overall computation of the throughput to a simple computation of minimums over
the strongly connected components, which can be done in polynomial time.

Theorem 3. Let us consider the system (X,Y) formed by the mapping of an application onto a plat-
form, following the Overlap communication model with a homogeneous communication network. Then the
throughput can be computed in polynomial time.

In the process of proving Theorem 3 (see Appendix C), we establish several interesting properties. First,
we prove that the inner throughput of a processor component Dj is ρj = λj . Then, for a communication
strongly connected component Dj , which is made of copies of a same pattern of size uj × vj , we prove that
its inner throughput is equal to ρj = λj

vj+uj−1 . This latter value, obtained in the exponential case, has to
be compared with the throughput in the deterministic case where all communication times are deterministic
(1/λj), which is equal to ρj = λj

max(vj ,uj)
. The fact that the throughput in the exponential case is lower than

the throughput in the deterministic case will be explained in Section 4. However, the fact that the throughput
can be computed explicitly is much more unexpected, since such explicit formulas are known to be very hard
to obtain, even for simple event graphs [1].

The global throughput can then be computed in polynomial time from all inner throughputs, and it is
equal to:

ρ =
∑

Dj∈C2N−1

min
Dj′≺Dj

ρj′ , (1)

where Dj′ ≺ Dj means that there exists a path from component Dj′ to component Dj , or Dj′ = Dj .
Because of the structure of the timed Petri net, if Dj′ is in column Ci′ and Dj is in column Ci, then i′ < i or
j′ = j. The computation can thus be done column by column. For any components in the first column, its
throughput must be equal to its inner throughput ρj . The computation for column i only depends on results
from column i−1 by construction of the Petri net. Moreover, the total number of components is polynomial
in the number of processorsM . We obtain therefore a polynomial complexity (2N−1 columns in the timed
Petri net, and a polynomial number of components).

The detailed proof of this theorem can be found in Appendix C. It starts similarly to the proof of The-
orem 2, but the computation of inner throughputs is simplified, since we have explicit formulas in all cases
(as explained above).

4 Comparison results in case of general I.I.D. variables

In the previous section, we have shown how to compute the throughput when all communication times
and all processing times are exponential variables (and this even in polynomial time for the homogeneous
Overlap case). In general, it is well known that the computation of the throughput is hard for arbitrary
random communication times and processing times, even for very simple cases [11]. However, the fact that
in our case, the throughput is an increasing and convex function of communication times and processing
times implies that one can use stochastic comparisons to construct bounds on the throughput in the case
where communication times and processing times are I.I.D. N.B.U.E. variables (see Section 4.1). Moreover,
the lower and upper bounds are obtained by the deterministic and exponential cases respectively.

4.1 Theoretical comparison

Definition 1. Let {V (n)}n∈N and {W (n)}n∈N be two real random variable sequences:
• V is smaller than W for the strong order (denoted V ≤st W) if for all increasing function f ,
E[f(V (1), V (2), · · ·)] ≤ E[f(W (1),W (2), · · ·)].

7

• V is smaller than W for the increasing convex order (denoted V ≤icx W) if for all increasing convex
function g, E[g(V (1), V (2), · · ·)] ≤ E[g(W (1),W (2), · · ·)].

In the following, we consider a very general system that is either Strict or Overlap and whose processing
times and communication times are I.I.D..

Theorem 4. Consider two systems (X(1), Y (1)) and (X(2), Y (2)). If ∀1 ≤ p ≤ M,X
(1)
p (n) ≤st X

(2)
p (n)

and ∀1 ≤ p, q ≤M,Y
(1)
p,q (n) ≤st Y

(2)
p,q (n), then ρ(1) ≥ ρ(2).

Proof. Consider the Petri nets modeling both systems. They only differ by the firing times of the transitions.
Then for b = 1, 2, Let Db

k(n) be the time when transition Tk ends its n-th firing. The Petri net being an
event graph (all places have a single input transition and all places have a single output transition), the
variables Db

k(n) satisfy a (max,plus) linear equation: Db(n) = Db(n − 1) ⊗ Ab(n) 1, where the matrices
Ab(n) are such that Ab(n)ij =

∑
k T

b
k(n) if a path connects transtions Tp and Tq with one token in the first

place of the path and no token in any other place. Now, the firing times of the transitions T bk(n) are either
communication times or processing times so that there exists i, j (only depending on k, in a bijective way)
such that T bk(n) = X

(b)
p (n) or T bk(n) = Y

(b)
p,q (n). Therefore, T 1

k (n) and T 2
k (n) are I.I.D. sequences such

that T 1
k (n) ≤st T 2

k (n) for all n and k, so that the same holds for the sequence of matrices Ab(n). Now, the
(max,plus) matrix product and the sum are increasing functions. This implies that D1(n) ≤st D

2(n).
Finally, the throughput ρ(b) is the limit of n/E[Db(n)] when n goes to infinity, so that ρ(1) ≥ ρ(2),

which concludes the proof.

Theorem 5. Let us consider two systems with I.I.D. communication and processing times
(X(1), Y (1)) and (X(2), Y (2)). If we have for all n, ∀1 ≤ p ≤ M,X

(1)
p (n) ≤icx X

(2)
p (n) and ∀1 ≤ p, q ≤

M,Y
(1)
p,q (n) ≤icx Y

(2)
p,q (n), then ρ(1) ≥ ρ(2).

Proof. The proof is similar to the previous one, using the fact that Db
k(n) is also a convex function (a

composition of maximum and sums) of the communication and processing times.

Theorem 6. Let us consider any system (X(1), Y (1)), such that X(1)
p (n) and Y (1)

p,q (n) are N.B.U.E.. Let us
also consider two new systems (X(2), Y (2)) and (X(3), Y (3)) such that:
• ∀1 ≤ p ≤M,X

(2)
p (n) has an exponential distribution, and E[X(1)

p (n)] = E[X(2)
p (n)],

• ∀1 ≤ p, q ≤M,Y
(2)
p,q (n) has an exponential distribution, and E[Y (1)

p,q (n)] = E[Y (2)
p,q (n)],

• ∀1 ≤ p ≤M,X
(3)
p (n) is deterministic and for all n, X(3)

p (n) = E[X(2)
p (n)],

• ∀1 ≤ p, q ≤M,Y
(3)
p,q (n) is deterministic and for all n, Y (3)

p,q (n) = E[Y (2)
p,q (n)].

Then we have:
ρ(3) ≥ ρ(1) ≥ ρ(2).

Proof. A direct consequence of the N.B.U.E. assumption is that if V is N.B.U.E. and W is exponential
with the same mean as V , then V ≤icx W (see [8], for example). It is also direct to show that if U is
deterministic and U = E[V], then U ≤icx V . Therefore, a direct application of Theorem 5 shows that
ρ(3) ≥ ρ(1) ≥ ρ(2).

In particular, Theorem 6 implies that in the Overlap case with a homogeneous communication network,
as soon as communication times and processing times are N.B.U.E., then the throughput ρ can be bounded
explicitly. It is comprised between the throughput of the system in which all random processing times are
replaced by their mean values (given by Formula (1), where the inner throughput of processing components
are the same as in the exponential case and the throughput of communication components is replaced by

λi
max(ui,vi)

and the throughput of the system in which all random processing times are replaced by exponential
variables with the same mean value, given by Formula (1).

1the product ⊗ is defined as: (V ⊗M)k = maxi(Vi + Mik).

8

Exponential laws

 1.115

 1.12

 1.125

 1.13

 1.135

 1.14

 1.145

 1.15

 1.155

 100 1000 10000 100000 1e+06

T
h
ro

u
g
h
p
u
t

Number of events

Constant values

 1.11

Figure 3: Evolution of the measured throughput with the number of samples.

Distribution Constant Exponential Uniform Uniform Pareto
value c mean c between c/2 and 3c/2 between c/10 and 19c/10 mean c

Throughput 2.0299 2.0314 2.0304 2.0305 2.0300

Table 1: Throughput obtained with several distributions of same mean.

4.2 Numerical experiments

In this section, we compare the behavior of several random distributions of same mean for an application
made of N = 8 stages, and a 31-processor platform. The expected throughput is numerically determined
using the ERS software [10], by simulation up to convergence to the stationary behavior. Figure 3 shows
that at least 100,000 samples are required to reach stable values. We compare constant, exponential, uniform
and Pareto distributions. As can be seen in Table 1, all throughputs are comprised between the throughput
of the deterministic system and the one with exponential laws, in accordance with Theorem 6 for uniform
distributions that are NBUE. Also note that the bounds still hold for the Pareto law even though it is not
N.B.U.E.. Moreover, these figures are quite close, which is good news: replacing a random variable by
either a constant value or by an exponential law with same mean may well lead to very good approximations.

5 Finding the optimal mapping

In this section, we depart from the main trend of the paper in that we do not consider that the mapping
of the application onto the platform is given. Instead, we aim at determining the optimal mapping, i.e.,
the one-to-many mapping that optimizes the throughput. The rationale is that the optimal mapping could
enjoy a particular structure that would facilitate renders the computation of the throughput. In other words,
computing the optimal throughput might be easier than computing the throughput of an arbitrary mapping
We prove that this is not the case: determining the optimal mapping is NP-complete, even in the deterministic
case and without any communication cost (hence for both models). Note that the one-to-one problem, i.e.
without replication, was shown to have polynomial complexity in [3]

Theorem 7. In the deterministic case, the problem of finding the one-to-many mapping (with replication)
which minimizes the period on a heterogeneous platform without communication costs, is NP-complete.

Proof. Consider the associated decision problem: given a period K, does there a mapping whose period

9

does not exceed K? The problem is obviously in NP: given a period and a mapping, it is easy to check in
polynomial time whether it is valid or not.

The NP-completeness is obtained by a reduction from 3-PARTITION, which is NP-complete in the
strong sense [7]. Let I1 be an instance of 3-PARTITION: given a set A = {a1, ..., a3m} and an integer B,
with ∀1 ≤ i ≤ 3m, B4 < ai <

B
2 and

∑
1≤i≤3m ai = mB, does it exist m disjoint subsets A1, ..., Am of

A such that ∀1 ≤ j ≤ m,
∑

ai∈Aj
ai = B? We construct an instance I2 of our problem with 3m pipeline

stages and m(m+1)
2 B processors such that:

• ∀1 ≤ k ≤ 3m,wk = m!× ak (computation cost of stage Tk);
• ∀1 ≤ j ≤ m, there are exactly j ×B processors of speed m!

j ;
• the period is fixed to K = 1.
Note that in this instance the sum of the speeds of all processors is equal to the sum of computation

costs of all stages. This proves that in a mapping of period 1, processors cannot be idle. Therefore, all
processors allocated to a same stage must have the same speed (see Section 2.2). Also, since 3-PARTITION
is NP-complete in the strong sense, we can encode I1 in unary. Then, the values in I2 (stage computation
costs, processor speeds, period) can be encoded in binary and thus their size is polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution
A1, ..., Am. For all 1 ≤ j ≤ m, for all i such that ai ∈ Aj , we associate the stage Ti of computation cost wi
to ai × j processors of speed m!

j . Since
∑

ai∈Aj
ai × j = B × j, this solution respects the number of

available processors. We obtain, for all 1 ≤ i ≤ 3m such that ai ∈ Aj , a period ai×j
ai×j = 1. This proves that

this mapping is a valid solution for I2.
Suppose now that I2 has a solution. We know that all processors allocated to a given stage have same

speeds, otherwise the period would be greater than 1. For 1 ≤ j ≤ m, let Aj be the set of ak such that
stage Tk is mapped onto processors of speed m!

j . We obtain ∀j,∑ak∈Aj
ak ×m! ≤ j ×Bm!

j , which means
∀j,∑ak∈Aj

ak ≤ B. Since we have
∑

1≤i≤3m ai = mB, we derive that ∀j,∑ak∈Aj
ak = B. Therefore,

A1, ..., Am is a solution for I1. This concludes the proof.

6 Conclusion

In this paper, we have investigated how to compute the throughput achieved by a given one-to-many mapping
of a streaming application onto a target heterogeneous platform. The major novelty is the introduction of
I.I.D. variables to model computation and communication times. In previous work [2], we have introduced
methods to compute the throughput in the deterministic case, using timed Petri nets. We extended these re-
sults to the situation where computation and communication times follow I.I.D. exponential laws, providing
a method whose cost may be exponential. We have refined this result and derived a polynomial-time algo-
rithm for the Overlap model and a homogeneous communication network. able to compute the throughput
explicitly. In the general case of arbitrary I.I.D. and N.B.U.E. random variables, we have established bounds
on the The lower and upper bounds are obtained by the deterministic and exponential cases respectively.
Both bounds can be computed in polynomial time under the Overlap model with a homogeneous com-
munication network. We also proved that determining the mapping that maximizes the throughput is an
NP-complete problem, even in the simpler deterministic case with no communication costs.

Now that we have new methods to evaluate the throughput of a given mapping in a probabilistic setting,
we will devote future work to designing polynomial time heuristics for the NP-complete problem mentioned
above. Thanks to the methodology introduced in this paper, we will be able to compute the throughput of
heuristics and compare them together. This would be a first and important step in the field of scheduling
streaming applications on large-scale platforms whose load and performance are subject to dynamic varia-
tions.

10

References

[1] F. Baccelli and D. Hong. Analyticity of iterates of random non-expansive maps. Research Report
3558, INRIA, Sophia-Antipolis, 1998.

[2] A. Benoit, M. Gallet, B. Gaujal, and Y. Robert. Computing the throughput of replicated workflows
on heterogeneous platforms. In Proceedings of 38th International Conference of Parallel Processing,
2009.

[3] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. J. Parallel Dis-
tributed Computing, 68(6):790–808, 2008.

[4] M. D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Optimizing execution of component-based applica-
tions using group instances. Future Generation Computer Systems, 18(4):435–448, 2002.

[5] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Program-
ming. Parallel Computing, 30(3):389–406, 2004.

[6] DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in a Grid Environment.
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[8] B. Gaujal and J.-M. Vincent. Introduction to Scheduling, chapter Comparisons of stochastic task-
resource systems. CC Press, 2009.

[9] O. Häggström. Finite Markov Chains and Algorithmic Applications. Cambridge University Press,
2002.

[10] A. Jean-Marie. ERS: a tool set for performance evaluation of discrete event systems. http://
www-sop.inria.fr/mistral/soft/ers.html.

[11] J. Kamburowski. Bounding the distribution of project duration in pert networks. Operation Research
Letters, 12:17–22, 1992.

[12] D. E. Knuth. The Art of Computer Programming. Volume 3, second edition. Addison-Wesley, 1998.

[13] Y. Kumazawa. Tests for new better than used in expectation with randomly censored data. Se-
quen.Anal., 5:85–92, 1986.

[14] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz. Executing
multiple pipelined data analysis operations in the grid. In Supercomputing’02. ACM Press, 2002.

[15] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel tasks. In PPoPP’95, pages
134–143. ACM Press, 1995.

[16] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel pipelines. In
SPAA’96, pages 62–71. ACM Press, 1996.

[17] K. Taura and A. Chien. A heuristic algorithm for mapping communicating tasks on heterogeneous
resources. In HCW’00, pages 102–115. IEEE Computer Society Press, 2000.

11

[18] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. Toward optimizing latency un-
der throughput constraints for application workflows on clusters. In Euro-Par’07: Parallel Processing,
LNCS 4641, pages 173–183. Springer Verlag, 2007.

[19] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. A duplication based algorithm
for optimizing latency under throughput constraints for streaming workflows. In ICPP’2008, pages
254–261. IEEE Computer Society Press, 2008.

[20] Q. Wu and Y. Gu. Supporting distributed application workflows in heterogeneous computing environ-
ments. In ICPADS’08. IEEE Computer Society Press, 2008.

12

c

d fe

a b

P6

P4

P12P8
P7 P10P9 P11

P2 P3

P1

P5
P3

P4

P5

P6

P2

T3T2
F2

P2

P2

P3

P3

P3

P2

P4

P4

P5

P6

P5

P6

Figure 4: Example A: Part of the timed Petri net corresponding to communication F2.

A Proof of Theorem 1

Proof. First, we present the main steps of the complete proof:
1. model the system by a timed Petri net;
2. transform this timed Petri net into a Markov chain;
3. compute the stationary measure of this Markov chain;
4. derive the throughput from the marginals of the stationary measure.

Model the system as a timed Petri net. As said before, the transformation of the initial system into a
timed Petri net is fully described in [2] and we do not detail it entirely here. Recall from Section 3.1 that it
consists in R = lcm1≤i≤N (Ri) rows and 2N − 1 columns, and examples for both models are depicted in
Figure 2. This step is done in time O (RN), and the expectation of the delay between two successive firings
of any transition gives the throughput of the system.

Transformation of the timed Petri net into a Markov chain. To compute the expectation of the delay
between two successive firings of any transition, we transform the above timed Petri net into a Markov
chain (Z1, Z2, . . .). To each possible marking Mi of the timed Petri net, we associate a state xi. There
are (2N + 3(N − 1))R places, and each place contains either zero or one token. Thus, there are at most
2(2N+3(N−1))R possible different markings, leading to the same number of states in the Markov chain.

Due to the exponential size of the number of states of the Markov chain, we only consider the part of
the timed Petri net corresponding to communications in examples. This part is shown in Figure 4.

On Example A, places are named (P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12), while transitions
are named (a, b, c, d, e, f). Thus, a state is defined by a 12-uple, each number equal to either 0 or 1 being
the number of tokens in the place. In the Markov chain, moving from a state to another corresponds to the
firing of a transition of the timed Petri net. Thus, arrows in the graphical representation of the Markov chain

13

(1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1)

a

b

c

b

a

c

a

b

f

f

f

e

e

e

d

d

d

c

(0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0)

(1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1)

(0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0)

(0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1)

(0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0)

(0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1)

(0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1)

(0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0)

(0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0)

(1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1)

Figure 5: List of all possible states of the Markov chain corresponding to the reduced timed Petri net of
Example A.

are labeled with the names of the transitions. The complete list of possible states and the corresponding
transitions are given in Figure 5.

If in state xi, transition Tj can be fired leading to state xk, then the transition rate of the corresponding
arrow is set to λj .

Computation of the throughput. Using this new representation, we are able to compute the throughput.
The throughput is the number of completed last stage TN per time unit. In terms of Petri nets, this is also
the expected number of firings per time unit of the transitions in the last column. Thus, in terms of Markov
chains, the throughput is given by the probability of being in one of the states enabling these transitions.
By construction of the Markov chain, all of its states are positive recurrent. Thus, it admits a stationary
distribution, giving the probability of each state. This stationary distribution can be computed in polynomial
time in the size of the Markov chain by solving a linear system [9]. The sum of the probability of the valid
states returns the throughput.

14

B Proof of Theorem 2

Proof. First, let us give the overall structure of the proof:
1. split the timed Petri net into columns Ci, with 1 ≤ i ≤ 2N − 1;
2. separately consider each column Ci;
3. separately consider each connected component Dj of Ci;
4. note that each component Dj is made of many copies of the same pattern Pj , of size uj × vj ;
5. transform Pj into a Markov chainMj ;
6. determine a stationary measure ofMj , using a combinatorial trick based on Young diagrams [12];
7. compute the throughput ofPj in isolation (called inner throughput of componentDj in the following);
8. combine the inner throughputs of all components to get the global throughput of the system.

To decrease the overall complexity, we use the same idea as in [2]: thanks to the regularity of the global
timed Petri net, we split it into a polynomial number of columns, and we compute the throughput of each
column independently.

Let us focus on a single column. We have two cases to consider: (i) the column corresponds to the
computation of a single processor (columns C2i−1, for 1 ≤ i ≤ N); (ii) the column corresponds to commu-
nications between two sets of processors (columns C2i, for 1 ≤ i ≤ N − 1).

In case (i), cycles do not interfere: any cycle involves a single processor, and any processor belongs to
exactly one cycle. Thus, the inner throughput is easily computed, this is the expectation of the number of
firing per time unit. The processing time Xp(n) being exponential, this is equal to the rate λp of Xp.

On the contrary, case (ii) is more complex and requires a more detailed study. Let us consider the i-th
communication (column C2i): it involves Ri senders and Ri+1 receivers. We already know that the timed
Petri net is made of g = gcd(Ri, Ri+1) connected components. Let u be equal to Ri/g and v be equal to
Ri+1/g. Then each connected component Dj in this column is made of c = R

lcm(Ri,Ri+1) copies of a pattern
Pj of size uj×vj . Since these components are independent, we can compute the throughput of each of them
independently. In the case of Example B presented in Figure 6, we consider a 4-stage application, such that
stages are replicated on respectively 5, 21, 27 and 11 processors. More precisely, we focus on the second
communication, involving 21 senders and 27 receivers. In this case, we have g = 3 connected components,
made of 55 copies of pattern Pj of size uj × vj = 9× 7.

Each pattern is a timed Petri net Pj with a very regular structure, which can be represented as a rectangle
of size (uj , vj), also denoted (u, v) to ease notations, as shown in Figure 6. As said before, determining
the throughput of P is equivalent to determine a stationary measure of a Markov chain. We know that the
stationary measure of a Markov chain with t states can be computed in time O

(
t3
)

[9]. Thus, we need to
determine the number of states of the transformation of Pj into a Markov chain. LetMj be this Markov
chain.

The number of states of Mj is by definition the number of possible markings, and we can directly
determine it. A valid marking of Pj of Figure 6 is represented in Figure 7. The regularity of the structure
imposes some constraints to valid markings: a transition can be fired for the k-th time if, and only if, all
the transitions above it or on its left have been fired k times. In other terms, if a processor sends a file to
q receivers P1, . . . , Pq, it can send the k-th instance of the file to Pi if and only if it has sent the k first
instances of the file to P1, . . . , Pi−1.

In our rectangular representation of the timed Petri net, the borderline between transitions that have been
fired k + 1 times and those that have been fired k times is the union of two Young diagrams, as displayed
on Figure 7. Since there is only a single token in each column and in each row, we cannot have three
simultaneous Young diagrams.

Let us compute the number of states of the Markov chainMj . As said in the previous paragraph, the
borderline can be seen as two Young diagrams, or two paths. The first one is from coordinates (i, 0) to

15

(0, j), and the second one goes from (u, j) to (i, v) (see Figure 8). If i and j are given, then there are

αi,j =
(
i+ j
i

)
possible paths from (i, 0) to (0, j), where

(
n
k

)
is equal to n!

k!(n−k)! . Similarly, there

are αu−1−i,v−1−j possible paths from (u, j) to (i, v). Thus, if i and j are given, then there are αi,j ×
αu−1−i,v−1−j possible markings. If i and j are not given anymore, then the total number S(u, v) of valid
markings can be easily determined:

S(u, v) =
∑u−1

i=0

∑v−1
j=0 αi,jαu−1−i,v−1−j

=
∑u−1

i=0

∑v−1
j=0

(
i+ j
i

)(
u+ v − 2− i− j

u− 1− i

)
=

(
u+ v − 1
u− 1

)
v = (u+v−1)!

(u−1)!v! v

Thus, the final Markov chain of a single connected component has exactly S(u, v) = (u+v−1)!
(u−1)!v! v states,

and its inner throughput can be computed in time S(u, v)3.

Let us now come to the computation of the global throughput of the system. Actually, the throughput is
given by the following iteration. The throughput of one strongly connected component is the minimum of
its inner throughput and the throughput of all its input components, so once all inner throughputs are known,
the computation of the throughput is linear in the number of components.

In column C2i, we have g = gcd(Ri, Ri+1) connected components so that the total computation time
to obtain their throughput is equal to gS(u, v). Since we have S(gu, gv) ≥ gS(u, v), u = Ri/g and
v = Ri+1/g, the total computation time to determine the throughput of C2i is less than S(Ri, Ri+1).

Finally, the total computation time of the throughput is equal to
∑N−1

i=1 S(Ri, Ri+1)3, leading to our
result of a throughput that can be computed in time O

(
N exp(max1≤i≤N (Ri))3

)
.

16

3 connected components

v = 9

u = 7

55 patterns

27

T2 T4T3

R1 R2 R4R3

5 21 11

T1

Figure 6: Example B, with stages replicated on 5, 21, 27 and 11 processors, and structure of the timed Petri
net corresponding to the second communication.

17

i

u

j

Fired k + 1 times

v

Fired k − 1 timesFired k times

Figure 7: Valid marking of Pj , the reduced timed Petri net of the second communication of Example B.

18

u− i

v − j

(v, 0)
i

(0, 0)

j

(0, v) (u, v)

Figure 8: Representation with Young diagrams of a valid marking.

(0, v) (u, v)u− i

v − j

(v, 0)
i

(0, 0)

j

Figure 9: Reachable states from a given position.

19

C Proof of Theorem 3

Proof. Platforms with the Overlap model and a homogeneous communication network are special cases of
the Overlap model. Thus, the demonstration of Theorem 2 remains true, and we focus again on the Markov
chainMj , obtained from a pattern of component Dj .

If Dj corresponds to a processor, the formula given previously applies, and its inner throughput is
ρj = λj .

Next, we focus on a strongly connected component corresponding to a communication. We already
know that the throughput is given by an invariant measure ofMj . Graphically, the set of reachable states
from a given state is easy to define: any of the top-left corners in the line can be “inverted” into a bottom-
right corner to obtain a new valid state. In terms of Petri nets, this corresponds to the firing of one fireable
transition. On Figure 7, there are 4 fireable transitions, corresponding to 4 top-left corners on the bold line
in the equivalent Figure 9. Moreover, this reasoning can be inverted: any bottom-right corner in 7 can be
inverted, giving a possible previous marking leading to the current marking. Since we have as many top-left
corners as bottom-right ones on Young diagrams, any state ofMj has the same number of incoming states as
outgoing ones. Moreover, since the communication network is homogeneous, all transitions have the same
firing rate. These two conditions imply that the invariant measure of the Markov chainMj is uniform [9]:
if S is the number of states ofMj , then its invariant measure is (1

S , . . . ,
1
S).

Last, let us compute the number of states ofMj allowing a given transition to be fired. Due to symmetry,
all transitions have the same firing rate and we can only consider the top-right transition T0 of the net. By
using the bijection with Young diagrams, the number of markings such that T0 is fireable is exactly the
number S′(u, v) of possible paths starting from this top-right corner. The quantity S′(u, v) is computed in
the same way as S(u, v) (see proof of Theorem 2):

S′(u, v) =
u−2∑
i=0

v−2∑
j=0

αi,j =
(
u+ v − 2
u− 1

)
=

S(u, v)
v + u− 1

.

Finally, we know the rate of the states leading to a given transition, and the number of states leading to
it. Thus, the inner throughput is equal to λj

(v+u−1) .
As in the previous case, the throughput of a component can be computed in an iterative way. The

throughput of one component is equal to the minimum of its inner throughput and the throughput of all its
incoming components. This allows one to compute the throughput of all components starting from the first
column and ending in the last one.

Now, the global throughout is the rate at which tasks exit the system. This is equal to the sum of the
throughputs of all components in the last column 2N − 1. The throughputs of the last components are equal
to the minimum of the inner throughputs of all components on paths from the first column to the last. This
is exactly formula (1).

Computing ρ column by column renders the computation of this formula polynomial in the number of
tasks and processors.

20

