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1.1 Introduction and motivations

1.1.1 Introduction

In this section, we focus our attention on the problem of scheduling lots of
independent tasks on a parallel platform, typically a master-worker platform.
We assume that we can arbitrarily split the total amount of work in parts of
different sizes and distribute them to an arbitrary number of workers. The job
has to be perfectly parallel, without any dependence between two sub-tasks.
In practice, this model is a rational relaxation of an application made of a large
number of identical, fine-grain parallel computations. This happens in many
cases, like the processing of satellite pictures or the study of seismic events.
This model is known as the divisible load model and has been widespread by
Bharadwaj, Ghose, Mani and Robertazzi in [?] ten years ago.

In this chapter, we will focus our attention on a specific example of applica-
tion and platform, namely the Earth seismic tomography using a star-shaped
platform of processors. This application is used to validate a model for the
internal structure of Earth (as shown in Figure 1.1), by comparing for every
seismic event the propagation time of seismic waves as computed by the model
with the time measured by physical devices. Each event is independent from
other ones and there are large number of such events: 817,101 events were
recorded only for the year 1999. The master processor owns all item, reads
them and scatter them among P active workers. Then each work can process
the data received from the master independently. Our objective is to mini-
mize to total completion time, also known as the makespan. The simplified
code of the program can be written as in Table 1.1.

This application respect all limitations allowing the use of the Divisible Load
Theory, since it is made of a very large number of fine grain computations,
and these computations are independent. We do not have any dependency,
synchronization nor communication between two tasks. Many applications
respect these constraints TODO donner d’autres exemples applications. . .
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4 Introduction to scheduling

Figure 1.1: Model for the internal structure of Earth.

if rank == MASTER then
raydata← Read n lines from data file;
MPI Scatter(raydata, n/P, . . . , rbuff, . . . ,

MASTER,MPI COMM WORLD);
end if
Compute work(rbuff)

Table 1.1: Simplified code for assessing the model quality

We wil consider two different types of platforms. The first one is a bus-
shaped master-worker platform, where all workers are connected to the master
through the same link, and the second one is a star-shaped master-worker plat-
form, where workers are connected to the master through links with different
characteristics.

In the next subsection 1.1.2, we will first solve our problem in a classical
fashion, without using the Divisble Load Theory. Then in subsection 1.1.3 we
will use the DLT to find the solution.

1.1.2 Classical approach

In this subsection, we will not use the Divisible Load Theory and we will
solve our problem in a classical fashion.

The targeted platform is the bus-shaped network, as shown in Figure 1.2.
Workers are a priori heterogeneous, and thus they have different computation
speeds. According to the bus-shaped network, they share the same link to the
master, and we can represent the bus-shaped network as a standard star-
shaped network with homogeneous communication links.

We will use the following notations, illustrated by Figure ??:

• M is the master processor, which initially holds all events to process.

• We have p workers, denoted as P1, . . . , Pp. In order to simplify some
equations, P0 will be the master processor M .

• Worker Pi takes a time wi to execute a unit-size load. Of course, M
takes a time w0 to process such a load.
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Figure 1.2: Example of bus-shaped network.
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Figure 1.3: Theoritical model of a bus-shaped network.

• Any worker Pi needs c time units to receive a unit-size load from the
master. We recall that all worker communicate at the same speed with
the master, as specified by the bus-shaped network.

• M initially holds a total number of tasks equal to Wtotal. In practice,
Wtotal is a very large integer.

• M will allocate ni tasks to worker Pi. ni is a integer, and since all tasks
have to be processed, we have

∑p
i=0 ni = Wtotal (we consider that the

master can process several tasks).

• By definition, the computation time Ci of processor Pi needed for pro-
cesing its ni tasks is equal to ni.wi.

• The completion time Ti corresponds to the end of the computation of Pi.
It is also equal to the sum of the waiting time of Pi (since Pi is idle while
previous processors are communicating with M), the communication
time of Pi with M and the computation time itself.

We allow the overlap of communications by computations on the master,
i.e., the master can send data to workers while computing its own data.
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Nonetheless, workers cannot begin their computations before having received
all their data. We respect the full 1-port communication model: the mas-
ter can communicate to at most one worker at a time. Finally, any worker
receives all its data in one message.

As we said before, we want to minimize the total completion time T , needed
to compute all the Wtotal tasks. Then we have to determine the values for the
nis, which minimize T .

Let us compute the completion time Ti of processor Pi: Since we assume
that processors are served in the order P1, . . . , Pp, equations are simple:

• P0: T0 = n0.w0

• P1: T1 = n1.c + n1.w1

• P2: T2 = n1.c + n2.c + n2.w2

• P3: T2 = n1.c + n2.c + n3.c + n3.w3
...

...
...

...
...

...
...

• Pi: Ti =
∑i

j=1 nj .c + ni.wi for i ≥ 1

These equations are illustrated by Figures 1.4, 1.5 and 1.6. If we let c0 = 0
and ci = c for i ≥ 1, we can make this equation more homogeneous: Ti =∑i

j=0 nj .cj + ni.wi for i ≥ 0.
By definition, the total completion time T is equal to:

T = max
0≤i≤p

 i∑
j=0

nj .cj + ni.wi

 (1.1)

If we rewrite Equation 1.1 as

T = n0.c0 + max

n0.w0, max
1≤i≤p

 i∑
j=0

nj .cj + ni.wi

 ,

we recognize an optimal sub-structure for the distribution of Wtotal−n0 among
processors P1 to Pp. This remark allow to easily find a solution for n0, . . . , np

using dynamic programmation. Such a solution is given in Table 1.2.
Nevertheless, this solution is not really satisfying and suffers from several

drawbacks. First, we do not have a closed form of the solution (of the ni’s
nor of T ). Moreover, the order of the processors during the distribution is
fixed (the master communicates with P1, then with P2, P3, and so on). Since
powers of processors are a priori different, this order could be sub-optimal,
and this solution does not help us to find the right order among the p! possible
orders. There are by far too many possible orders to try an exhaustive search.
Furthermore, the time complexity of this solution is W 2

total × p, so the time
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Figure 1.4: M computes and sends data to P1.
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Figure 1.5: M and P1 compute, M sends data to P2.
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Figure 1.6: Complete schedule.
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1: solution[0, p]← cons(0,NIL); cost [0, p]← 0
2: for d← 1 to Wtotal do
3: solution[d, p]← cons(d,NIL)
4: cost [d, p]← d · cp + d · wp

5: end for
6: for i← p− 1 downto 1 do
7: solution[0, i]← cons(0, solution[0, i + 1])
8: cost [0, i]← 0
9: for d← 1 to Wtotal do

10: (sol ,min)← (0, cost [d, i + 1])
11: for e← 1 to d do
12: m← e · ci + max(e · wi, cost [d− e, i + 1])
13: if m < min then
14: (sol ,min)← (e,m)
15: end if
16: end for
17: solution[d, i]← cons(sol , solution[d− sol , i + 1])
18: cost [d, i]← min
19: end for
20: end for
21: return (solution[Wtotal, 1], cost [Wtotal, 1])

Table 1.2: Solution for the classical approach, using dynamic programming
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to decide the right values of the nis can be greater than the time of effective
computation ! Finally, if Wtotal is slightly changed, we cannot reuse the
previous solution to obtain a new distribution of the nis and we have to do
the entire computation.

As we can see, even if we an algorithm, which gives us a good solution in
polynomial time, we can ask for a better way to solve our problem. Then,
let us call the help of the Divisible Load Theory. If we have around 800, 000
tasks for 10 processors, there are roughly 80, 000 tasks on each processor, in
the case of identical processors. So, even if we have a rational solution (i.e.,
a non-integer number of tasks on each processor), we might afford the extra-
cost of rounding this solution to obtain integer numbers of tasks and then a
valid solution, especially if we can overcome the previous limitations.

1.1.3 Divisible load approach

As said in introduction, the main principle of the Divisible Load Theory is
to relax the integer constraint on the number of tasks on each worker. This
simple idea can lead to very good results, even if we loose a bit of precision in
the solution. Now, let us examine our problem, using this relaxation: instead
of a integer number ni of tasks, processor Pi (with 0 ≤ i ≤ p) will compute
a fraction αi of the total load Wtotal, where αi ∈ Q. The number of tasks
allocated to Pi is then equal to ni = αiWtotal and we have the constraint∑p

i=0 αi = 1, ensuring that the whole set of tasks will be computed.

1.1.3.0.1 Bus-shaped network In this paragraph, we keep exactly the
same model as before: we still have a bus-shaped network with heterogeneous
workers, and data are distributed to workers in a single message, following a
linear cost model. Equation 1.1 can be easily translated in Equation 1.2 to
use our brand new notation.

T = max
0≤i≤p

 i∑
j=0

αj .cj + αi.wi

Wtotal (1.2)

Using this equation, we can show several important results in optimal so-
lution:

• all participating processors end their work at the same time in Lemma
1,

• all processors are working in Lemma 2,

• the master processor should be the fastest one but the order of others
processors is not important in Lemma 3.

These three lemmas are summarized in Theorem 1.
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Lemma 1 In an optimal solution, all processors end their processing at the
same time.

PROOF Consider any solution, such that at least two workers do not
finish their work at the same time. Without any loss of generality, we can
assume that these two processors are Pi and Pi+1 (with i ≥ 0) and such that
either Pi or Pi+1 finishes its work at time T (the total completion time).

1.1.3.0.2 i ≥ 1 and Ti < Ti+1 The first case to consider is Ti < Ti+1, i.e.
Pi finishes earlier than Pi+1. We decrease the fraction αi+1 allocated to Pi+1

by a size ε, and thus we increase the fraction αi allocated to Pi by the same
fraction ε, as illustrated by Figure 1.9. Since we want Pi and Pi+1 to finish
at the same time, we have the following equations:

(∑i
j=0 αj .cj + αi.wi + (wi + ci) ε

)
Wtotal =

(∑i+1
j=0 αj .cj + αi+1.wi+1 − (wi+1 + ci+1) ε

)
Wtotal

⇔ (wi + ci) ε = αi+1.ci+1 + αi+1.wi+1 − (wi+1 + ci+1) ε
⇔ ε (wi + ci + wi+1 + ci+1) = αi+1.ci+1 + αi+1.wi+1

⇔ ε = αi+1.ci+1+αi+1.wi+1
wi+ci+wi+1+ci+1

Since we have ci+1 = ci = c, the communication time is the same for
processors after Pi+1. ε is positive, then, in this new solution, both Pi+1 and
Pi finish their work strictly earlier than Ti+1

1.1.3.0.3 i ≥ 1 and Ti+1 < Ti A similar reasoning leads to a strictly
better solution, with a decrease of the amount of work on Pi+1 and an increase
of the work of Pi.

1.1.3.0.4 T0 < T1 This case is very similar to the first one, excepting that
the communication time is just smaller for others processors.

1.1.3.0.5 T0 > T1 Without any loss of generality, we can assume that all
others processors finish their work strictly before P0 (by repeatedly using the
first three cases). Let ν be equal to T0 −max1≤i≤p Ti. Then we decrease the
amount of work on P0 by a fraction ε and we increase the work of P1 by the
same fraction. The completion times Ti of processors P2, . . . , Pp are increased
by c.ε.Wtotal and the completion time of P1 is increased by (c + w1) .ε.Wtotal.
If we choose ε such that we have max (c.ε.Wtotal, (c + w1) .ε.Wtotal) < ν (i.e.,
ε < ν

(c+w1).Wtotal
), then P0 finish its work strictly earlier than T because it has

less work, and others processors still finish earlier than T because the amount
of work on P1 is not too increased.

Then, if in a given solution, at least two processors do not finish their
work at the same time, we can in all cases exhibit a strictly better solution.
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Figure 1.7: P1 finishes earlier than P2.
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Figure 1.8: A fraction of the load allocated to P2 is given to P1.
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Figure 1.9: This new schedule is strictly better.
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We conclude that all processors do have the same end time in any optimal
solution.

Lemma 2 All processors are enrolled in an optimal solution.

PROOF This is a direct consequence of Lemma 1.

Lemma 3 If we can choose the master processor, it should be the fastest
processor, but the order of others processors has no importance.

PROOF Let us consider any optimal solution (α0, α1, . . . , αp). By using
Lemma 1, we know that T = T0 = T1 = . . . = Tp. Thus the following
equations:

• T = α0.w0.Wtotal,

• T = α1. (c + w1) .Wtotal and then α1 = w0
c+w1

α0,

• T = (α1.c + α2. (c + w2))Wtotal and then α2 = w1
c+w2

α1,

• for all i ≥ 1, we derive αi = wi−1
c+wi

αi−1.

Thus, we have αi =
∏i

j=1
wj−1
c+wj

α0 for all i ≥ 0. We know that
∑p

i=0 αi = 1,
so we can deduce the complete value of α0, and thus we have closed formulas
for all αis.

Using these formulas, we are able to answer to both questions. First, we
show that we should choose the fastest processor as the master one (when we
can decide who is the master processor). Assuming the total completion time
is still T and that P0 is slower than P1 (i.e., w0 > w1), we have for processors
P0 and P1:

• α0.w0.Wtotal = T and then α0 = 1
w0

T
Wtotal

,

• (α1.w1 + α1.c) .Wtotal = T and then α1 = 1
c+w1

T
Wtotal

.

Then the total amount of work done by both processors is equal to:

α0 + α1 =
c + w0 + w1

w0.c + w0.w1

If we exchange P0 and P1 (the faster P1 becomes the master processor), the
total amount of work is then equal to:

α0 + α1 =
c + w1 + w0

w1.c + w1.w0

Since w1 < w0, this sum is greater than the previous one: during the same
time, we can process a greater amount of work if the fastest processor is the
master.
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Now, we can apply this reasonning to processors Pi and Pi+1, where Pi is
not the master processor (i.e., 1 ≤ i ≤ p − 1). We have the two following
equations 1.3 and 1.4:

T = Ti =

i−1∑
j=1

αj .c

+ αi.wi + αi.c

 .Wtotal (1.3)

T = Ti+1 =

i−1∑
j=1

αj .c

+ αi.c + αi+1.wi+1 + αi+1.c

 .Wtotal (1.4)

With K =
T−Wtotal.(

Pi−1
j=1 αj .c)

Wtotal
, we have

αi =
K

wi + c

αi+1 =
K − αi.c

wi+1 + c

The total fraction of work processed by these two processors is equal to:

αi + αi+1 =
K

wi + c
+

K

wi + c
− c.K

(wi + c) (wi+1 + c)

We see that this expression is symmetric in wi and wi+1, and we can conclude
that the communication order has no importance on the quality of a solution,
even if it is contrary to the intuition.

Theorem 1 For divisible loads applications on bus-shaped networks, we should
select the fastest processor as the master; the order of the communications with
others processors has no impact on the quality of a solution. All processors
participate to the work and they finish simultaneously. Closed-form formulas
give the fraction of the load allocated to each processor.

1.1.3.0.6 Star-shaped network The bus-shaped network model can be
seen as a particular case of the more general star-shaped network, with homo-
geneous communications. Now, we focus our attention on such star-shaped
networks: every worker is linked to M through a different communication link
as shown in Figure 1.10, processors and communication links have different
characteristics.

Notations are the same as the previous ones and are illustrated by Figure
??: we have a master processor M , and p workers P1, . . . , Pp. Master sends a
unit-size message to Pi (with 1 ≤ i ≤ p) in time ci, and Pi processes it in time
wi. The total amount of load to compute is equal to Wtotal, and Pi receives
a fraction αi of this load (with αi ∈ Q and

∑p
i=1 αi = 1).
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Figure 1.10: Example of star-shaped network.
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Figure 1.11: Theoritical model of a star-shaped network.
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We assume that the master does not help to the computation, but if this
assertion is not verified, we can add a virtual processor P0, with the same
speed w0 as the master and with instantaneous communications: c0 = 0. As
before, M sends a single message to each worker, and it can communicate to
at most one worker at a time, following the one-port model.

This new model seems to be a simple extension of the previous one, and we
will check whether our previous lemmas are still valid. After the presentation
of useful equations, we will show that the following lemmas are true for any
optimal solution:

• all active workers must be served in the non-decreasing order of cis in
Lemma 4,

• all processors participate to the work in Lemma 5,

• all workers end their work at the same time in Lemma 6,

• an optimal solution can be computed using a linear program in Lemma
7.

As for the bus-shaped network model, all these results are summarized in
Theorem 2.

Lemma 4 In an optimal solution, all active workers must be served in the
non-decreasing order of cis

PROOF We use the same method as for proving Lemma 3: we consider
two workers Pi and Pi+1 (with 1 ≤ i ≤ p− 1) and we check whether the total
of work which can be done in a given time T by them is dependent of their
order.

For these two processors, we have the following Equations 1.5 and 1.6,
similar to Equations 1.3 and 1.4 seen in the case of a bus-shaped network:

T = Ti =

i−1∑
j=1

αj .cj

+ αi.wi + αi.ci

 .Wtotal (1.5)

T = Ti+1 =

i−1∑
j=1

αj .cj

+ αi.ci + αi+1.wi+1 + αi+1.ci+1

 .Wtotal (1.6)

With K =
T−Wtotal.(

Pi−1
j=1 αj .cj)

Wtotal
, previous Equations 1.5 and 1.6 can be

respectively rewritten as:

αi =
K

wi + ci

αi+1 =
K − αi.ci

wi+1 + ci+1
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Time needed by communications can be written as:

(αi.ci + αi+1.ci+1) .Wtotal =
(

ci

wi + ci
+

ci+1

wi+1 + ci+1

)
.K− K.ci.ci+1

(wi + ci)(wi+1 + ci+1)

We see that the equation is symmetric and the communication time is com-
pletely independent of the order of the two communications.

The total fraction of work is equal to:

αi + αi+1 =
(

1
wi + ci

+
1

wi+1 + ci+1

)
.K − K.ci

(wi + ci)(wi+1 + ci+1)

Contrary to the communication time, the fraction of the load done by pro-
cessors Pi and Pi+1 depends on the order of the communications. If we serve
the fastest-communicating processor first, the fraction of the load processed
by Pi and Pi+1 can be increased without increasing the communication time
for others workers. In others terms, in any optimal solution, participating
workers should be served by non-decreasing values of ci.

Lemma 5 In any optimal solution, all processors participate to the work.

PROOF Let us consider an optimal solution (α1, . . . , αp) and assume that
at least one processor remains idle during the whole computation. Without
any loss of generality, we can also assume that communications are served in
the order (P1, . . . , Pp). We denote by k the greatest index such that αk = 0
(i.e., Pk is the last processor which is kept idle during the computation). We
have two cases to consider:

• k < p
By definition, Pp is not kept idle and thus αp 6= 0. We know that Pp is
the last processeor to communicate with the master, and then there is
no communication during the last αp.wp.Wtotal time units.

Therefore, we can send at least αp.wp.Wtotal

ck+wk
> 0 load units to the pro-

cessor Pk, and it would finish its computation at the same time as Pp.
So, we can exhibit a strictly better solution than the previous optimal
one, in which Pk was kept idle.

• k = p
We modify the initial solution to give some work to the last processor,
without increasing the total completion time. Let k′ be the greatest
index such that αk′ 6= 0. By definition, since Pk′ is the last served
processor, there is no communication with the master during at least
ak′ .wk′ .Wtotal time units. As previously, we can give at least αk′ .wk′ .Wtotal

cp+wp
>

0 load units to Pp and then exhibits a strictly better solution than the
previous optimal one.
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Then, in all cases, if at least one processor remains idle, we can build a strictly
better solution. This is sufficient to demonstrate that in any optimal solution,
all processors participate to the work.

Lemma 6 In any optimal solution, all workers end their work at the same
time.

PROOF Since this proof requires more complicated arguments, the reader
may want to skip it.

Let us consider any optimal allocation (α1, . . . , αp). Thanks to the Lemma
5, we know that all workers participate to the computation and then all αi

are positive. Consider the following linear program:

MAXIMIZE
∑p

i=1 βi,
SUBJECT TO
∀i, βi ≥ 0,

∀i,
∑i

k=1 βkck + biwi ≤ T

The αi’s obviously satisfy the set of constraints above, and from any set of
βi’s satisfying the set of inequalities, we can build a valid schedule that pro-
cesses exactly

∑p
i=1 βi units of load. Let (β1, . . . , βp) be any optimal solution

to this linear program. By definition, we have
∑p

i=1 αi =
∑p

i=1 βi.
We know that one of the extremal solutions S1 of the linear program is one

of the convex polyhedron P induced by the inequalities TODO ajouter la ref:
this means that in the solution S1, there are at least p inequalities among the
2p equalities. If we use Lemma 5, we know that all the βi’s are positive and
then this vertex is the solution of the following (full rank) linear system

∀i ∈ (1, . . . , p),
i∑

k=1

βkck + βiwi = T.

Thus, we derive that there exists at least one optimal solution, such that all
workers finish simultaneously.

Now, let us consider another optimal solution S2 = (α1, . . . , αp), different
from S2. Similarly to S1, S2 belongs to the polyhedron P. Now, consider the
following function f :

f :
{

R→ Rp

x 7→ S1 + x(S2 − S1)

By construction, we know that
∑p

i=1 βi =
∑p

i=1 αi. Thus, with the notation
f(x) = (γ1(x), . . . , γp(x)):

∀i ∈ (1, . . . , p), γi(x) = βi + x(αi − βi),
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and therefore

∀x,

p∑
i=1

γi(x) =
p∑

i=1

βi =
p∑

i=1

αi.

Therefore, all the points f(x) that belong to P are extremal solutions of the
linear program.

Since P is a convex polyhedron ad both S1 and S2 belong to P, then
∀0 ≤ x ≤ 1, f(x) ∈ P. Let us denote by x0 the largest value of x ≥ 1 such
that f(x) still belongs to P: at least one constraint of the linear program is an
equality in f(x0), and this constraint is not satisfied for x > x0. We know that
this constraint cannot be one of the upper bounds: otherwise, this constraint
would be an equality along the whole line (S2, f(x0)), and would remain an
equality for x > x0. Hence, the constraint of interest is one of the lower
bounds. In other terms, there exists an index i, such that γi(x0) = 0. This is
in contradiction with Lemma 5 and with the fact that the γi’s correspond to
an optimal solution of the problem.

We can conclude that S1 = S2, and thus there exists an unique optimal
solution, and in this solution, all workers finish simultaneously their work.

Lemma 7 We can find a closed-form formula for the fraction of the total
load allocated to processor i (1 ≤ i ≤ p):

βi =
1

ci+wi

∏i−1
k=1

(
1− ck

ck+wk

)
∑p

j=1

(
1

cj+wj

∏j−1
k=1

(
1− ck

ck+wk

))
PROOF Thanks to the previous lemmas, we know that all workers partic-
ipate to the computation (Lemma 5) and have to be served by non-decreasing
values of ci (Lemma 4) and that all workers finish simultaneously (Lemma 6).

Without any loss of generality, we assume that c1 ≤ c2 ≤ . . . ≤ cp. By
definition, the completion time of the i-th processor is given by:

∀i ∈ (1, . . . , p), Ti = T = Wtotal

(
i∑

k=1

βkck + βici

)
. (1.7)

For the first processor, Equation 1.7 can be written as:

T = Wtotalβ1(c1 + w1)⇔ β1 =
T

Wtotal

1
c1 + w1

Assume that for i ≥ 1, we have the following equation

βi =
T

Wtotal

1
ci + wi

i−1∏
k=1

(
1− ck

ck + wk

)
. (1.8)
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Thanks to Equation 1.7, we have

βi =
T

Wtotal

1
wi + ci

(
1−

i−1∑
k=1

βkck

)

and

Ti+1 = T = Wtotal

(∑i
k=1 βkck + βi+1 (wi+1 + ci+1)

)
⇔ βi+1 = T

Wtotal

1
wi+1+ci+1

(
1−

∑i
k=1 βkck

)
⇔ βi+1 = T

Wtotal

1
wi+1+ci+1

((
1−

∑i−1
k=1 βkck

)
− βici

)
⇔ βi+1 = ci+wi

ci+1+wi+1

((
T

Wtotal

1
wi+ci

(
1−

∑i−1
k=1 βkck

))
− βi

ci

ci+wi

)
⇔ βi+1 = ci+wi

ci+1+wi+1
βi

(
1− ci

ci+wi

)
Time to use Equation 1.8:

βi+1 =
T

Wtotal

1
ci+1 + wi+1

i∏
k=1

(
1− ck

ck + wk

)
.

We still do not know the total completion time T , but we can use the linear
model for communication and computation costs. We define for any proces-
sor i (1 ≤ i ≤ p) γi = 1

ci+1+wi+1

∏i
k=1

(
1− ck

ck+wk

)
and then we have our

allocation by normalizing these γ’s:

∀1 ≤ i ≤ p, βi =
γi∑p

k=1 γk
.

Thus, our complete closed-form formula for the fraction of the total load
allocated to the i-th worker is:

βi =
1

ci+wi

∏i−1
k=1

(
1− ck

ck+wk

)
∑p

j=1

(
1

cj+wj

∏j−1
k=1

(
1− ck

ck+wk

))

Theorem 2 For divisible loads applications on star-shaped networks, we should
order workers by non-decreasing values of ci. All processors participate to the
work and they finish simultaneously. Closed-form formulas give the fraction
of the load allocated to each processor.

We will conclude this section with two remarks.

• If the order of the communications cannot be freely chosen, Lemma 5 is
not always true.
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• In this section, we considered that the master processor did not partic-
ipate to the processing. If this condition is not satisfied, we can easily
add a virtual worker, with the same processing speed as the master, and
a communication time equal to 0. If we can also choose the master pro-
cessor, the simplest way to find the best choice is to compute the total
completion time in all cases: we have only p different cases to check, so
this trivial solution remains feasible.

1.2 Several extensions to the divisible load model

In the first part of this chapter, we have shown that th use of the divisible
load theory can greatly help to solve scheduling problems, that are hard to
solve if we only use classical models.

When we do not use the divisible load theory, we have to use a very simple
model (homogeneous communication links and linear cost functions for com-
putations and communications). The divisble load theory changes this already
hard problem in a very simple one, and we already saw that this heory allows
the problem to remain tractable even with heterogeneous communications.

In one hand, a very realistic model should surely be untractable, and a very
simple model has no chance to be realistic. Then the natural question is to find
hwo far can we go in extending our model, the problem remaining tractable
with the help of the divisible load theory. We show in the next sections
several extensions to the basic situation. In Section 1.2.1, we cancel the
linear cost model for communications by introducing latencies. We decide to
distribute chunks to processors in several messages in Section 1.2.2. Another
possible modification is the cancellation of the overlap of communications
by computations, as done in Section ??. In Section ??, we generalize the
star-shaped network by using tree-shaped networks. We still assume that
data were only sent from the master to the workers, and that the result
of the computation was a negligible communication, and in Section 1.2.3 we
removes this assumption. We finish this section by summarize all these results
in Section ??.

1.2.1 Introducing latencies

In the previous section, we use a simple but efficient linear cost model for
communications. So, the time needed to transmit a data is perfectly pro-
portionnal to the size of these data. In the real world, we always have a
small latency as well a communication header and then a better communica-
tion model should be affine. We have to introduce new notations for these
latencies: Ci denotes the communication latency paid by worker Pi for any
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communication from the master, and Wi denotes the latency corresponding
to an initialization of any computation. If Pi has to process a fraction αi of
the total load, then its communication time is equal to Ci + ciαiWtotal and
its computation time is equal to Wi + wiαiWtotal.

This variant of the problem is much more difficult than the previous one.
In fact, its complexity remains an open problem. However, some important
results can be shown for any optimal solution:

• all workers end their work at the same time in Lemma 8,

• if the load is large enough, all workers participate to the work and must
be served in the non-decreasing order of ci in Lemma 9,

• an optimal solution can be found using a mixed linear program in
Lemma 10.

Lemma 8 In any optimal solution, all workers have the same completion
time.

PROOF This lemma can be shown using a proof similar to the proof of
Lemma 6. A detailed proof is given in TODO(ref à un techreport).

Lemma 9 In any optimal solution, and if the load is large enough, all workers
participate to the work and must be served in the non-decreasing order of
communication time ci.

PROOF We want to determine the total amount of work which can be
done in a time T , and let us consider any valid solution to this problem.
The set of the k active workers is denoted S = {Pσ(1), . . . , Pσ(k)}, where σ
is a one-to-one mapping from [1 . . . k] to [1 . . . p] and represents the order of
communications. The number of processed units of load reachable using this
set of workers in this order is denoted by nTASK .

• Consider the following instance of our problem, with k workers P ′
σ(1), . . . , P

′
σ(k),

such that ∀i ∈ {1, . . . , k}, C ′
i = 0,W ′

i = 0, c′i = ci, w
′
i = wi (in fact, we

are just ignoring all latencies). We will determine the total number
of work units n′TASK which can be done in the same time T , and of
course this number is greater than the number nTASK obtained with
the original platform:

nTASK ≤ n′TASK .

Using Theorem 2, we know that n′TASK is given by a formula of the
following form:

n′TASK = f(S, σ) · T.

The main point is that n′TASK is proportionnal to T .
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• Consider now the same platform without latencies, but this time we will
determine the number of works units n′′TASK , which could be done in a
time T ′′ = T −

∑
i∈S(Ci + Wi). n′′TASK is clearly smaller than nTASK

since it consists in adding all latencies before the beginning of the work:

n′′TASK ≤ nTASK .

The previous equality still stands:

n′′TASK = f(S, σ)

(
T −

∑
i∈S

(Ci + Wi)

)
.

We have n′′TASK ≤ nTASK ≤ n′TASK and then

f(S, σ)
(

1−
∑

i∈S(Ci + Wi)
T

)
≤ nTASK

T
≤ f(S, σ).

Therefore, when T becomes arbitrarily large, then the throughput of the plat-
form becomes close to the theoritical model without any latency. Thus, when
T is sufficiently large, in any optimal solution, all workers participate to the
work, and chunks should be sent on the ordering of non-decreasing communi-
cation times ci.

Without any loss of generality, we can assume that c1 ≤ . . . ≤ cp and then
the following linear system returns an asymptotically optimal solution:

∀i ∈ {1, . . . , p},
i∑

k=1

(Ck + ckαkWtotal) + Wi + wiαiWtotal = T.

Moreover, when T is sufficiently large, this solution is optimal when all ci are
different, but determine the best way to break ties among workers having the
same communication speed remains an open question.

Lemma 10 An optimal solution can be found using a mixed linear program
(with a potentially exponential computation cost).

PROOF In TODOref au papier de Casanova etal, the authors added the
resource selection issue to the original linear program given by Drozdowsky in
TODO trouver la bonne ref. To address this issue, they added two notations:
yj , which is a binary variable equal to 1 if Pj participates to the work, and xi,j ,
which is a binary variable equal to 1 if Pj is chosen for the i-th communication
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from the master.
MAXIMIZE Tf

SUBJECT TO
∀i ∈ {1, . . . , p}, αi ≥ 0∑p

i=1 αi = 1
∀j ∈ {1, . . . , p}, yj ∈ {0, 1}
∀i, j ∈ {1, . . . , p}, xi,j ∈ {0, 1}
∀j ∈ {1, . . . , p},

∑p
i=1 xi,j = yj

∀i ∈ {1, . . . , p},
∑p

j=1 xi,j ≥ 1
∀j ∈ {1, . . . , p}, αj ≤ yj

∀i ∈ {1, . . . , p},
∑i−1

k=1

∑p
j=1 xk,j(Cj + αjcjWtotal) +

∑p
j=1 xi,j(Cj + αjcjWtotal + Wj + αjwjWtotal) ≤ Tf

Equation 5 implies that Pj is involved in exactly yj communication. Equation
6 states that that at most one worker is used for the i-th communication.
Equation 7 ensures that non-participating workers have no work to process.
Equation 8 implies that the worker selected for the i-th communication must
wait for the previous communications before starting its own communication
and then its computation.

This linear program always has a solution and gives us the selected workers
and their fraction of the total load to process in an optimal solution.

1.2.2 Multiround strategies

Until now, we only used models with a strict one-port communication
scheme, and data were transmitted to workers in a single message. There-
fore, any worker has to wait while previous workers are communicating with
the master before beginning to process its part of the work, and this waiting
time can lead to a poor utilization of the platform. A natural solution to
quickly distribute some work to every processor is to distribute data in multi-
ple rounds: while the first processor is computing the beginning of its task, we
can distribute data to others workers and then we resume the distribution to
the first processor. By this way, we hope to overlap communications by com-
putation and thus to increase the throughput of our platform, as represented
by Figure 1.12.

If this idea seems to be promising, we have two new questions to answer:

1. how many rounds should we use to distribute the whole load?

2. which size should we allocate to each round?

If we follow the example of the problem using a single-round distribution, we
should try to solve this problem without latencies for communications before
adding them. In fact, this case is not interesting since it leads to an optimal
solution with an infinite number of rounds of size zero. On the contrary,
when latencies are added to the model, they prevent the solution to use such
an infinite number of rounds, but we saw that problems were by far harder
with latencies.



24 Introduction to scheduling
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Figure 1.12: Multi-round execution over a bus-shaped platform.

1.2.2.1 Bus-shaped network and homogeneous processors, fixed
number of rounds

The simplest case to explore is a bus-shaped network of homogeneous pro-
cessors, i.e., homogeneous communication links, and when the number of
rounds is given to the algorithm.

Intuitively, rounds have to be small to allow a fast start of computations,
and have to be large to amortize the cost of latencies. These two contradictory
objectives can be merged by using small rounds at the beginning, and then
increasing them progressively to amortize paid latencies.

The first works on this topic were done by Bharadwaj et al. using a linear
cost model for both communications and computations TODO reference à
trouver, and they were followed by Yang and Casanova TODO reference à
ajouter using affine models instead linear ones.

Since we only consider homogeneous platforms, we have for any worker i
(with 1 ≤ i ≤ p) wi = w, Wi = W , ci = c and Ci = C. Moreover, R denotes
the computation-communication ratio (R = w/c) and γj denotes the time to
compute the chunk j excluding the computation latency: γj = αj ·w ·Wtotal.
We assume that we distribute the whole load in M rounds of p chunks. For
technical reasons, chunks are numbered in the reverse order, from Mp−1 (the
first one) to 0 (the last one).

Using these notations, we can write the recursion on the γj series:

∀j ≥ p, W + γj =
1
R

(γj−1 + γj−2 + . . . + γj−p) + p · C (1.9)

∀0 ≤ j < p,W + γj =
1
R

(γj−1 + γj−2 + . . . + γj−p) + j · C + γ0 (1.10)

∀j < 0, γj = 0 (1.11)

Equation 1.9 expresses that a worker j must receive enough data to compute
during exactly the time needed for the next p chunks to be communicated,
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ensuring no idle time on the communication bus. This equation is of course
not true for the last p chunks. Equation 1.10 states that all workers have to
finish their work at the same time, following Lemma 8. Finally, Equation 1.11
ensures the correctness of the two previous equations by setting out-of-range
terms to 0.

This recursion corresponds to an infinite αj series, of which the first pM
values give the solution to our problem. Using generating functions, we can
solve this recursion. Let us call G(x) the generating function for the series γj ,
i.e., G(x) =

∑∞
j=0 γjxj . Using Equations 1.9 and 1.10, Yang and Casanova

found the value of G(x) in TODOtoujours la même ref:

G(x) =
(γ0 − p · C)(1− xp) + (p · C −W ) + C · (x(1−xp−1)

1−x − (p− 1)xp)
(1− x)− x(1− xp)/R

.

The rational expansion methode (TODO ref needed) gives the roots of the
polynomial denominator and then the correct values of the γj ’s, and finally,
the values of the αj ’s. The value of the first term γ0 is given by the equation∑Mp−1

j=0 γj = Wtotal · w.
TODO écrire la même chose sous la forme d’un joli lemme ?

1.2.2.2 Bus-shaped network, computed number of rounds

In the previous section, we assumed that the number of rounds was given to
the algorithm, thus we avoided one of the two issues of multiround algorithms.
Now, we suppose that the number of chunks has to be computed by the
scheduling algorithm as well their respective sizes. As we said before, we
have to find a good compromise between a small number of chunks, to reduce
the overall cost of latencies, and a large one, to ensure a good overlap of
communications by computations.

In fact, finding the optimal number of rounds for such algorithms and affine
cost models is still an open question. Nonetheless, Casanova and Yang pro-
posed the Uniform Multi-Round (UMR) algorithm (TODO encore une ref à
mettre.... ). This algorithm is valid in the homogeneous case as well in the
heterogeneous case, but we will only look at the homogeneous one for sim-
plicity reasons. To simplify the problem, UMR assume that all chunks sent
to workers during the same round have the same size. This constraint can
limit the overlap of communications by computations, but it allows to find an
optimal number of rounds.

1.2.2.2.1 Optimal number of rounds In this section, αj denotes the
fraction of the load sent to any worker during the j-th round, so there are p
chunks of size αj . The constraint of uniform sizes for chunks of the same round
is not used for the last round, allowing the workers to finish simultaneously.
To ensure a good utilization of the communication link, authors force the last
worker Pp to start its computation immediately after the reception of its data.
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This condition can be written as:

W + αj · w cdotWtotal = p · (C + αj+1 · c ·Wtotal),

which leads to:

αj =
(

c

p · w

)j

(α0 − γ) + γ, (1.12)

where γ = 1
w−p·c · (p · C −W ). The case w − p · c is simpler and detailed in

the original paper TODO ref à ce papier, justement.
With this simple formula, we can give the makespan M of the complete

schedule, which is the sum of the time needed by the worker p to process its
data, the total latency of computations and the time needed to send all the
chunks during the first round (the 1

2 factor comes from the non-uniform sizes
of the last round, since all workers finish simultaneously):

M(M,α0) =
Wtotal

p
+ M ·W +

1
2
· p · (C + c · α0). (1.13)

The complete schedule needs to process the entire load, which can be written
as:

G(M,α0) =
M−1∑
j=0

p · αj = 0. (1.14)

Using these equations, our problem can be expressed as minimizingM(M,α0)
subject to G(M,α0). The Lagrange Multiplier method (TODO ref à trouver)
leads to a single equation, which can not be solved analytically but numeri-
cally. Several simulations showed that the uniform chunks can reduce perfor-
mances compared to the first multi-round algorithm when latencies are small
but leads to better results when latencies are important. Moreover, the UMR
algorithm can be used on heterogeneous platforms, contrary to the previous
multi-round algorithm.

1.2.2.2.2 Asymptotically optimal algorithm Clearly, to find an opti-
mal algorithm distributing data to workers in several rounds is hard and is
still an open question. Nonetheless, it is possible to design asymptotically
optimal algorithms. An algorithm is asymptotically optimal if the ratio of the
makespan obtained with a load Wtotal over the optimal makespan with this
same load tends to 1 as Wtotal tends to infinity. This approach is coherent
with the fact that the Divisible Load Theory already is an approximation well
fitted to large workloads.

Theorem 3 Let consider a star-shaped platform with arbitrary values of com-
putation and communication speeds and latencies allowing the overlap of com-
munications by computations, then there exists a periodic multi-round algo-
rithm, which asymptotically optimal.
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PROOF
The main idea is to look for a periodic schedule: the makespan T is divided

into k periods of duration Tp. The initialization and the end of the sched-
ule are sacrified, but the large duration of the whole schedule amortizes this
sacrifice. We still have to find a good compromize between small and large
periods, and choosing a period length proportionnal to the square-root of the
optimal makespan T ∗ is a good trade-off. The other problem is to choose
the participating workers, and was solved by Yand and Casanova using linear
programming. If I ⊆ {1, . . . , p} denotes selected workers, we can write that
communication and computation resources are not exceeded during a period
of duration Tp: ∑

i∈I
(Ci + αi · ciWtotal) ≤ Tp, (1.15)

∀i ∈ I,Wi + αi · wi ·Wtotal ≤ Tp. (1.16)

We aim to maximise the average throughput ρ =
∑

i∈I
αi·Wtotal

Tp
, where

αi·Wtotal

Tp
is the average number of load units processed by Pi in one time

unit, under the following linear constraints:{
∀i ∈ I, αi·Wtotal

Tp
wi ≤ 1− Wi

Tp
(overlap),∑

i∈I
αi·Wtotal

Tp
ci ≤ 1−

P
i∈I Ci

Tp
(1-port model)

This set of constraint can be replaced by the following one, stronger but easier
to solve:{
∀i ∈ {1, . . . , p}, αi·Wtotal

Tp
wi ≤ 1−

Pp
i=1 Ci+Wi

Tp
(overlap),∑p

i=1
αi·Wtotal

Tp
ci ≤ 1−

Pp
i=1 Ci+Wi

Tp
(1-port model)

(1.17)

Without any loss of generality, assume that c1 ≤ c2 ≤ . . . ≤ cp and let q be
the largest index, such that

∑q
i=1

ci

wi
≤ 1. Let ε be equal to 1 −

∑q
i=1

ci

wi
if

q < p, to 0 otherwise. Then the optimal throughput is realized with

∀1 ≤ i ≤ q, αi·Wtotal

Tp
= 1

ci

(
1−

Pp
i=1 Ci+Wi

Tp

)
αq+1·Wtotal

Tp
=
(
1− 1

Tp

∑p
i=1 (Ci + Wi)

)(
ε

cq+1

)
∀q + 2 ≤ i ≤ p αi = 0

and it is equal to

ρ =
p∑

i=1

αi ·Wtotal

Tp
=
(

1−
∑p

i=1 Ci + Wi

Tp

)
ρoptwithρopt =

q∑
i=1

1
wi

+
ε

cq+1

(1.18)
To prove the asymptotic optimality of this algorithm, we need an upper

bound of the optimal throughput ρ∗, which can be obtained by removing all
latencies (i.e., Gi = 0 and Wi = 0 for any worker i). Equation 1.18 states
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that we have ρ∗ ≤ ρopt. If we call T ∗ the optimal time needed to process B
load units, then we have

T ∗ ≥ B

ρ∗
≥ B

ρopt
.

Let denote T the time needed by the proposed algorithm to compute the same
workload B. The first period is dedicated to communications and is lost for
processing, so k =

⌈
B

ρ·Tp

⌉
+1 periods are required for the whole computation.

We have T = k · Tp, therefore,

T ≤ B

ρ
+ 2 · Tp ≤

B

ρopt

(
1

1−
∑p

i=1
Ci+Wi

Tp

)
+ 2 · Tp,

and therefore, if Tp ≥ 2 ·
∑p

i=1 Ci + Wi,

T ≤ B

ρopt
+ 2 · B

ρopt

p∑
i=1

Ci + Wi

Tp
+ 2 · Tp

and if Tp is equal to
√

B
ρopt

,

T

T ∗ ≤ 1 + 2

(
p∑

i=1

(Ci + Wi) + 1

)
1√
T ∗

= 1 + O

(
1√
T ∗

)
That suffices to show the asymptotic optimality of the proposed algorithm.

1.2.2.2.3 Maximum benefits of multi-round algorithms

1.2.3 Return Messsages

In all previous sections, we assumed that computations required a lot of
data as input, but that they produced a negligible ouput, so we do not take
care of its transmission. This assumption could be false since computations
could produce large outputs like cryptographic keys. On the contrary, we
suppose in this section that we have return messages, in order to see how the
previous results are changed, or not.

In the general case, there is no correlation between input and output sizes,
but we simplify the problem by assuming the same size for input and output
messages. In others words, if M needs ciαiWtotal time units to send the input
to worker Pi, Pi needs the same time to send the result back to M after having
completed its computation. The communication medium is supposed to be
bi-directionnal (as most of network cards are now full-duplex), so the master
M can simultaneously send and receive data.

In our first model with linear cost models and distribution in a single round,
all workers participated to the work and we were able to find an optimal order
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to distribute data. If we allow return messages, we have two new issues : the
order of return messages could be different from the distribution order and
several workers could remain idle during the whole computation. Two simple
ordering strategies are the FIFO strategy (return messages are sent in the
same order as the input messages) and the LIFO strategy (return messages
are sent in reverse order). In fact, several examples can (TODO faire des jolis
graphiques avec de tel exemples) be exhibited, such that the optimal order
for return messages is neitheir FIFO or LIFO.

Moreover, the distribution of data in a single round induces long waiting
times, and a multi-round distribution could really improve this drawback.
Regrettably, any optimal multi-round distribution for the linear cost model
uses an infinite number of rounds. Thus, affine cost models is required to
have realistic solutions, but the problem becomes very hard to solve or even
to approximate.

1.3 Final words

In this chapter, we paid attention to the Divisible Load Theory, a simple and
common relaxation. An common example of application is used as a guideline.
Without relaxation, this example already is a tractable problem. However,
the known solution to this problem suffers from several drawbacks. Moreover
the linear model used for the communication and computation costs and the
homogeneous communication model limit the representativeness. We show
how we can use the DLT to simplify the problem and to solve it. After having
simplified the problem with this relaxation, we can use a more featured model
by adding heterogeneous communication links or latencies in communications
and computations.


