

2

JavaScript for impatient programmers
Dr. Axel Rauschmayer

2019

“An exhaustive resource, yet cuts out the fluff that clutters many
programming books – with explanations that are understandable and to
the point, as promised by the title! The quizzes and exercises are a very

useful feature to check and lock in your knowledge. And you can
definitely tear through the book fairly quickly, to get up and running in

JavaScript.”
— Pam Selle, thewebivore.com

“The best introductory book for modern JavaScript.”
— Tejinder Singh, Senior Software Engineer, IBM

“This is JavaScript. No filler. No frameworks. No third-party libraries.
If you want to learn JavaScript, you need this book.”

— Shelley Powers, Software Engineer/Writer

Copyright © 2019 by Dr. Axel Rauschmayer
Cover by Fran Caye
All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher except
for the use of brief quotations in a book review or scholarly journal.
ISBN 978-1-09-121009-7
exploringjs.com

Contents

I Background 13
1 About this book (ES2019 edition) 15

1.1 About the content . 15
1.2 Previewing and buying this book . 16
1.3 About the author . 16
1.4 Acknowledgements . 16

2 FAQ: Book and supplementary material 19
2.1 How to read this book . 19
2.2 I own a digital edition . 20
2.3 I own the print edition . 21
2.4 Notations and conventions . 21

3 Why JavaScript? (bonus) 23
3.1 The cons of JavaScript . 23
3.2 The pros of JavaScript . 24
3.3 Pro and con of JavaScript: innovation . 25

4 The nature of JavaScript (bonus) 27
4.1 JavaScript’s influences . 27
4.2 The nature of JavaScript . 27
4.3 Tips for getting started with JavaScript 28

5 History and evolution of JavaScript 31
5.1 How JavaScript was created . 31
5.2 Standardizing JavaScript . 32
5.3 Timeline of ECMAScript versions . 32
5.4 Ecma Technical Committee 39 (TC39) . 33
5.5 The TC39 process . 33
5.6 FAQ: TC39 process . 35
5.7 Evolving JavaScript: Don’t break the web 35

6 FAQ: JavaScript 37
6.1 What are good references for JavaScript? 37
6.2 How do I find out what JavaScript features are supported where? 37
6.3 Where can I look up what features are planned for JavaScript? 38
6.4 Why does JavaScript fail silently so often? 38

3

4 CONTENTS

6.5 Why can’t we clean up JavaScript, by removing quirks and outdated fea-
tures? . 38

6.6 How can I quickly try out a piece of JavaScript code? 38

II First steps 39
7 The big picture 41

7.1 What are you learning in this book? . 41
7.2 The structure of browsers and Node.js . 41
7.3 JavaScript references . 42
7.4 Further reading . 42

8 Syntax 43
8.1 An overview of JavaScript’s syntax . 44
8.2 (Advanced) . 49
8.3 Identifiers . 49
8.4 Statement vs. expression . 50
8.5 Ambiguous syntax . 51
8.6 Semicolons . 52
8.7 Automatic semicolon insertion (ASI) . 53
8.8 Semicolons: best practices . 55
8.9 Strict mode vs. sloppy mode . 55

9 Consoles: interactive JavaScript command lines 59
9.1 Trying out JavaScript code . 59
9.2 The console.* API: printing data and more 61

10 Assertion API 65
10.1 Assertions in software development . 65
10.2 How assertions are used in this book . 65
10.3 Normal comparison vs. deep comparison 66
10.4 Quick reference: module assert . 67

11 Getting started with quizzes and exercises 71
11.1 Quizzes . 71
11.2 Exercises . 71
11.3 Unit tests in JavaScript . 72

III Variables and values 75
12 Variables and assignment 77

12.1 let . 78
12.2 const . 78
12.3 Deciding between const and let . 79
12.4 The scope of a variable . 79
12.5 (Advanced) . 81
12.6 Terminology: static vs. dynamic . 81
12.7 Global variables and the global object . 82

CONTENTS 5

12.8 Declarations: scope and activation . 84
12.9 Closures . 88
12.10Further reading . 90

13 Values 91
13.1 What’s a type? . 91
13.2 JavaScript’s type hierarchy . 92
13.3 The types of the language specification 92
13.4 Primitive values vs. objects . 93
13.5 The operators typeof and instanceof: what’s the type of a value? 95
13.6 Classes and constructor functions . 97
13.7 Converting between types . 98

14 Operators 101
14.1 Making sense of operators . 101
14.2 The plus operator (+) . 102
14.3 Assignment operators . 103
14.4 Equality: == vs. === . 104
14.5 Ordering operators . 107
14.6 Various other operators . 107

IV Primitive values 109
15 The non-values undefined and null 111

15.1 undefined vs. null . 111
15.2 Occurrences of undefined and null . 112
15.3 Checking for undefined or null . 113
15.4 undefined and null don’t have properties 113
15.5 The history of undefined and null . 114

16 Booleans 115
16.1 Converting to boolean . 115
16.2 Falsy and truthy values . 116
16.3 Truthiness-based existence checks . 117
16.4 Conditional operator (? :) . 119
16.5 Binary logical operators: And (x && y), Or (x || y) 119
16.6 Logical Not (!) . 121

17 Numbers 123
17.1 JavaScript only has floating point numbers 124
17.2 Number literals . 124
17.3 Arithmetic operators . 125
17.4 Converting to number . 127
17.5 Error values . 128
17.6 Error value: NaN . 128
17.7 Error value: Infinity . 130
17.8 The precision of numbers: careful with decimal fractions 131
17.9 (Advanced) . 131

6 CONTENTS

17.10Background: floating point precision . 131
17.11Integers in JavaScript . 133
17.12Bitwise operators . 135
17.13Quick reference: numbers . 138

18 Math 143
18.1 Data properties . 143
18.2 Exponents, roots, logarithms . 144
18.3 Rounding . 145
18.4 Trigonometric Functions . 146
18.5 Various other functions . 148
18.6 Sources . 149

19 Unicode – a brief introduction (advanced) 151
19.1 Code points vs. code units . 151
19.2 Encodings used in web development: UTF-16 and UTF-8 154
19.3 Grapheme clusters – the real characters 154

20 Strings 157
20.1 Plain string literals . 158
20.2 Accessing characters and code points . 158
20.3 String concatenation via + . 159
20.4 Converting to string . 159
20.5 Comparing strings . 161
20.6 Atoms of text: Unicode characters, JavaScript characters, grapheme clusters162
20.7 Quick reference: Strings . 164

21 Using template literals and tagged templates 173
21.1 Disambiguation: “template” . 173
21.2 Template literals . 174
21.3 Tagged templates . 175
21.4 Raw string literals . 177
21.5 (Advanced) . 177
21.6 Multiline template literals and indentation 178
21.7 Simple templating via template literals 179

22 Symbols 183
22.1 Use cases for symbols . 184
22.2 Publicly known symbols . 186
22.3 Converting symbols . 186

V Control flow and data flow 189
23 Control flow statements 191

23.1 Conditions of control flow statements . 192
23.2 Controlling loops: break and continue 192
23.3 if statements . 194
23.4 switch statements . 195
23.5 while loops . 197

CONTENTS 7

23.6 do-while loops . 198
23.7 for loops . 198
23.8 for-of loops . 199
23.9 for-await-of loops . 201
23.10for-in loops (avoid) . 201

24 Exception handling 203
24.1 Motivation: throwing and catching exceptions 203
24.2 throw . 204
24.3 The try statement . 205
24.4 Error classes . 207

25 Callable values 209
25.1 Kinds of functions . 209
25.2 Ordinary functions . 210
25.3 Specialized functions . 212
25.4 More kinds of functions and methods . 215
25.5 Returning values from functions and methods 216
25.6 Parameter handling . 217
25.7 Dynamically evaluating code: eval(), new Function() (advanced) 221

26 Environments: under the hood of variables (bonus) 225
26.1 Environment: data structure for managing variables 225
26.2 Recursion via environments . 225
26.3 Nested scopes via environments . 226
26.4 Closures and environments . 230

VI Modularity 233
27 Modules 235

27.1 Overview: syntax of ECMAScript modules 236
27.2 JavaScript source code formats . 237
27.3 Before we had modules, we had scripts 237
27.4 Module systems created prior to ES6 . 238
27.5 ECMAScript modules . 240
27.6 Named exports and imports . 241
27.7 Default exports and imports . 243
27.8 More details on exporting and importing 246
27.9 npm packages . 247
27.10Naming modules . 249
27.11Module specifiers . 250
27.12Loading modules dynamically via import() 252
27.13Preview: import.meta.url . 254
27.14Polyfills: emulating native web platform features (advanced) 256

28 Single objects 257
28.1 What is an object? . 258
28.2 Objects as records . 259

8 CONTENTS

28.3 Spreading into object literals (...) . 262
28.4 Methods . 264
28.5 Objects as dictionaries (advanced) . 271
28.6 Standard methods (advanced) . 279
28.7 Advanced topics . 279

29 Prototype chains and classes 283
29.1 Prototype chains . 284
29.2 Classes . 289
29.3 Private data for classes . 293
29.4 Subclassing . 295
29.5 FAQ: objects . 303

VII Collections 305
30 Synchronous iteration 307

30.1 What is synchronous iteration about? . 307
30.2 Core iteration constructs: iterables and iterators 308
30.3 Iterating manually . 309
30.4 Iteration in practice . 310
30.5 Quick reference: synchronous iteration 311

31 Arrays (Array) 313
31.1 The two roles of Arrays in JavaScript . 314
31.2 Basic Array operations . 314
31.3 for-of and Arrays . 317
31.4 Array-like objects . 318
31.5 Converting iterable and Array-like values to Arrays 319
31.6 Creating and filling Arrays with arbitrary lengths 320
31.7 Multidimensional Arrays . 321
31.8 More Array features (advanced) . 322
31.9 Adding and removing elements (destructively and non-destructively) . . 325
31.10Methods: iteration and transformation (.find(), .map(), .filter(), etc.) 327
31.11.sort(): sorting Arrays . 334
31.12Quick reference: Array<T> . 336

32 Typed Arrays: handling binary data (Advanced) 345
32.1 The basics of the API . 346
32.2 Element types . 348
32.3 More information on Typed Arrays . 350
32.4 Quick references: indices vs. offsets . 354
32.5 Quick reference: ArrayBuffers . 355
32.6 Quick reference: Typed Arrays . 356
32.7 Quick reference: DataViews . 359

33 Maps (Map) 361
33.1 Using Maps . 362
33.2 Example: Counting characters . 365

CONTENTS 9

33.3 A few more details about the keys of Maps (advanced) 365
33.4 Missing Map operations . 366
33.5 Quick reference: Map<K,V> . 368
33.6 FAQ: Maps . 370

34 WeakMaps (WeakMap) 373
34.1 WeakMaps are black boxes . 373
34.2 The keys of a WeakMap are weakly held 374
34.3 Examples . 375
34.4 WeakMap API . 376

35 Sets (Set) 377
35.1 Using Sets . 378
35.2 Examples of using Sets . 379
35.3 What Set elements are considered equal? 379
35.4 Missing Set operations . 380
35.5 Quick reference: Set<T> . 381
35.6 FAQ: Sets . 383

36 WeakSets (WeakSet) 385
36.1 Example: Marking objects as safe to use with a method 385
36.2 WeakSet API . 386

37 Destructuring 387
37.1 A first taste of destructuring . 388
37.2 Constructing vs. extracting . 388
37.3 Where can we destructure? . 389
37.4 Object-destructuring . 390
37.5 Array-destructuring . 391
37.6 Examples of destructuring . 392
37.7 What happens if a pattern part does not match anything? 394
37.8 What values can’t be destructured? . 394
37.9 (Advanced) . 395
37.10Default values . 395
37.11Parameter definitions are similar to destructuring 396
37.12Nested destructuring . 397

38 Synchronous generators (advanced) 399
38.1 What are synchronous generators? . 399
38.2 Calling generators from generators (advanced) 403
38.3 Background: external iteration vs. internal iteration 405
38.4 Use case for generators: reusing traversals 406
38.5 Advanced features of generators . 407

VIII Asynchronicity 409
39 Asynchronous programming in JavaScript 411

39.1 A roadmap for asynchronous programming in JavaScript 412
39.2 The call stack . 414

10 CONTENTS

39.3 The event loop . 415
39.4 How to avoid blocking the JavaScript process 416
39.5 Patterns for delivering asynchronous results 418
39.6 Asynchronous code: the downsides . 421
39.7 Resources . 422

40 Promises for asynchronous programming 423
40.1 The basics of using Promises . 424
40.2 Examples . 429
40.3 Error handling: don’t mix rejections and exceptions 433
40.4 Promise-based functions start synchronously, settle asynchronously . . . 435
40.5 Promise.all(): concurrency and Arrays of Promises 436
40.6 Tips for chaining Promises . 439
40.7 Advanced topics . 441

41 Async functions 443
41.1 Async functions: the basics . 443
41.2 Returning from async functions . 445
41.3 await: working with Promises . 447
41.4 (Advanced) . 449
41.5 Immediately invoked async arrow functions 449
41.6 Concurrency and await . 450
41.7 Tips for using async functions . 451

42 Asynchronous iteration 453
42.1 Basic asynchronous iteration . 453
42.2 Asynchronous generators . 456
42.3 Async iteration over Node.js streams . 460

IX More standard library 463
43 Regular expressions (RegExp) 465

43.1 Creating regular expressions . 466
43.2 Syntax . 467
43.3 Flags . 471
43.4 Properties of regular expression objects 474
43.5 Methods for working with regular expressions 475
43.6 Flag /g and its pitfalls . 480
43.7 Techniques for working with regular expressions 483

44 Dates (Date) 485
44.1 Best practice: avoid the built-in Date . 485
44.2 Time standards . 486
44.3 Background: date time formats (ISO) . 487
44.4 Time values . 488
44.5 Creating Dates . 489
44.6 Getters and setters . 490
44.7 Converting Dates to strings . 491

CONTENTS 11

45 Creating and parsing JSON (JSON) 493
45.1 The discovery and standardization of JSON 494
45.2 JSON syntax . 494
45.3 Using the JSON API . 495
45.4 Customizing stringification and parsing (advanced) 497
45.5 FAQ . 501

X Miscellaneous topics 503
46 Next steps: overview of web development (bonus) 505

46.1 Tips against feeling overwhelmed . 505
46.2 Things worth learning for web development 506
46.3 Example: tool-based JavaScript workflow 508
46.4 An overview of JavaScript tools . 510
46.5 Tools not related to JavaScript . 512

XI Appendices 515
47 Index 517

12 CONTENTS

Part I

Background

13

Chapter 1

About this book (ES2019 edition)

Contents
1.1 About the content . 15

1.1.1 What’s in this book? . 15
1.1.2 What is not covered by this book? 15
1.1.3 Isn’t this book too long for impatient people? 16

1.2 Previewing and buying this book . 16
1.2.1 How can I preview the book, the exercises, and the quizzes? . 16
1.2.2 How can I buy a digital edition of this book? 16
1.2.3 How can I buy the print edition of this book? 16

1.3 About the author . 16
1.4 Acknowledgements . 16

1.1 About the content
1.1.1 What’s in this book?
This bookmakes JavaScript less challenging to learn for newcomers by offering amodern
view that is as consistent as possible.
Highlights:

• Get started quickly by initially focusing on modern features.
• Test-driven exercises and quizzes available for most chapters.
• Covers all essential features of JavaScript, up to and including ES2019.
• Optional advanced sections let you dig deeper.

No prior knowledge of JavaScript is required, but you should know how to program.

1.1.2 What is not covered by this book?
• Some advanced language features are not explained, but references to appropri-
ate material are provided – for example, to my other JavaScript books at Explor-

15

https://exploringjs.com/
https://exploringjs.com/

16 1 About this book (ES2019 edition)

ingJS.com, which are free to read online.
• This book deliberately focuses on the language. Browser-only features, etc. are not
described.

1.1.3 Isn’t this book too long for impatient people?
There are several ways in which you can read this book. One of them involves skipping
much of the content in order to get started quickly. For details, see §2.1.1 “In which order
should I read the content in this book?”.

1.2 Previewing and buying this book
1.2.1 How can I preview the book, the exercises, and the quizzes?
Go to the homepage of this book:

• All essential chapters of this book can be read online.
• The first half of the test-driven exercises can be downloaded.
• The first half of the quizzes can be tried online.

1.2.2 How can I buy a digital edition of this book?
There are two digital editions of JavaScript for impatient programmers:

• Ebooks: PDF, EPUB, MOBI, HTML (all without DRM)
• Ebooks plus exercises and quizzes

The home page of this book describes how you can buy them.

1.2.3 How can I buy the print edition of this book?
The print edition of JavaScript for impatient programmers is available on Amazon.

1.3 About the author
Dr. Axel Rauschmayer specializes in JavaScript and web development. He has been de-
veloping web applications since 1995. In 1999, he was technical manager at a German
internet startup that later expanded internationally. In 2006, he held his first talk on Ajax.
In 2010, he received a PhD in Informatics from the University of Munich.
Since 2011, he has been blogging about web development at 2ality.com and has written
several books on JavaScript. He has held trainings and talks for companies such as eBay,
Bank of America, and O’Reilly Media.
He lives in Munich, Germany.

1.4 Acknowledgements
• Cover by Fran Caye

https://exploringjs.com/
https://exploringjs.com/
https://exploringjs.com/impatient-js/
https://exploringjs.com/impatient-js/#buy
http://francaye.net

1.4 Acknowledgements 17

• Parts of this book were edited by Adaobi Obi Tulton.
• Thanks for answering questions, discussing language topics, etc.:

– Allen Wirfs-Brock (@awbjs)
– Benedikt Meurer (@bmeurer)
– Brian Terlson (@bterlson)
– Daniel Ehrenberg (@littledan)
– Jordan Harband (@ljharb)
– Mathias Bynens (@mathias)
– Myles Borins (@MylesBorins)
– Rob Palmer (@robpalmer2)
– Šime Vidas (@simevidas)
– And many others

• Thanks for reviewing:
– Johannes Weber (@jowe)

[Generated: 2019-08-31 17:38]

http://www.serendipity23editorial.com
https://twitter.com/awbjs
https://twitter.com/bmeurer
https://twitter.com/bterlson
https://twitter.com/littledan
https://twitter.com/ljharb
https://twitter.com/mathias
https://twitter.com/MylesBorins
https://twitter.com/robpalmer2
https://twitter.com/simevidas
https://twitter.com/jowe

18 1 About this book (ES2019 edition)

Chapter 2

FAQ: Book and supplementary
material

Contents
2.1 How to read this book . 19

2.1.1 In which order should I read the content in this book? 19
2.1.2 Why are some chapters and sections marked with “(advanced)”? 20
2.1.3 Why are some chapters marked with “(bonus)”? 20

2.2 I own a digital edition . 20
2.2.1 How do I submit feedback and corrections? 20
2.2.2 How do I get updates for the downloads I bought at Payhip? . 20
2.2.3 Can I upgrade from package “Ebooks” to package “Ebooks +

exercises + quizzes”? . 20
2.3 I own the print edition . 21

2.3.1 Can I get a discount for a digital edition? 21
2.3.2 Can I submit an error or see submitted errors? 21
2.3.3 Is there an online list with the URLs in this book? 21

2.4 Notations and conventions . 21
2.4.1 What is a type signature? Why am I seeing static types in this

book? . 21
2.4.2 What do the notes with icons mean? 21

This chapter answers questions you may have and gives tips for reading this book.

2.1 How to read this book
2.1.1 In which order should I read the content in this book?
This book is three books in one:

• You can use it to get started with JavaScript as quickly as possible. This “mode” is
for impatient people:

19

20 2 FAQ: Book and supplementary material

– Start reading with §7 “The big picture”.
– Skip all chapters and sections marked as “advanced”, and all quick refer-
ences.

• It gives you a comprehensive look at current JavaScript. In this “mode”, you read
everything and don’t skip advanced content and quick references.

• It serves as a reference. If there is a topic that you are interested in, you can find in-
formation on it via the table of contents or via the index. Due to basic and advanced
content being mixed, everything you need is usually in a single location.

The quizzes and exercises play an important part in helping you practice and retain what
you have learned.

2.1.2 Why are some chapters and sections marked with “(advanced)”?
Several chapters and sections are marked with “(advanced)”. The idea is that you can
initially skip them. That is, you can get a quick working knowledge of JavaScript by only
reading the basic (non-advanced) content.

As your knowledge evolves, you can later come back to some or all of the advanced
content.

2.1.3 Why are some chapters marked with “(bonus)”?
The bonus chapters are only available in the paid versions of this book (print and ebook).
They are listed in the full table of contents.

2.2 I own a digital edition
2.2.1 How do I submit feedback and corrections?
The HTML version of this book (online, or ad-free archive in the paid version) has a link
at the end of each chapter that enables you to give feedback.

2.2.2 How do I get updates for the downloads I bought at Payhip?
• The receipt email for the purchase includes a link. You’ll always be able to down-
load the latest version of the files at that location.

• If you opted into emails while buying, you’ll get an email whenever there is new
content. To opt in later, you must contact Payhip (see bottom of payhip.com).

2.2.3 Can I upgrade from package “Ebooks” to package “Ebooks + ex-
ercises + quizzes”?

Yes. The instructions for doing so are on the homepage of this book.

https://exploringjs.com/impatient-js/downloads/complete-toc.html
https://exploringjs.com/impatient-js/#upgrades

2.3 I own the print edition 21

2.3 I own the print edition
2.3.1 Can I get a discount for a digital edition?
If you bought the print edition, you can get a discount for a digital edition. The homepage
of the print edition explains how.

Alas, the reverse is not possible: you cannot get a discount for the print edition if you
bought a digital edition.

2.3.2 Can I submit an error or see submitted errors?
On the homepage of the print edition, you can submit errors and see submitted errors.

2.3.3 Is there an online list with the URLs in this book?
The homepage of the print edition has a list with all theURLs that you see in the footnotes
of the print edition.

2.4 Notations and conventions
2.4.1 What is a type signature? Why am I seeing static types in this

book?
For example, you may see:

Number.isFinite(num: number): boolean

That is called the type signature of Number.isFinite(). This notation, especially the static
types number of num and boolean of the result, are not real JavaScript. The notation
is borrowed from the compile-to-JavaScript language TypeScript (which is mostly just
JavaScript plus static typing).

Why is this notation being used? It helps give you a quick idea of how a function works.
The notation is explained in detail in a 2ality blog post, but is usually relatively intuitive.

2.4.2 What do the notes with icons mean?

Reading instructions
Explains how to best read the content.

External content
Points to additional, external, content.

https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://2ality.com/2018/04/type-notation-typescript.html

22 2 FAQ: Book and supplementary material

Tip
Gives a tip related to the current content.

Question
Asks and answers a question pertinent to the current content (think FAQ).

Warning
Warns about pitfalls, etc.

Details
Provides additional details, complementing the current content. It is similar to a
footnote.

Exercise
Mentions the path of a test-driven exercise that you can do at that point.

Quiz
Indicates that there is a quiz for the current (part of a) chapter.

Chapter 3

Why JavaScript? (bonus)

Contents
3.1 The cons of JavaScript . 23
3.2 The pros of JavaScript . 24

3.2.1 Community . 24
3.2.2 Practically useful . 24
3.2.3 Language . 25

3.3 Pro and con of JavaScript: innovation 25

In this chapter, we examine the pros and cons of JavaScript.

“ECMAScript 6” and “ES6” refer to versions of JavaScript
ECMAScript is the name of the language standard; the number refers to the version
of that standard. For more information, consult §5.2 “Standardizing JavaScript”.

3.1 The cons of JavaScript
Among programmers, JavaScript isn’t always well liked. One reason is that it has a fair
amount of quirks. Some of them are just unusual ways of doing something. Others are
considered bugs. Either way, learning why JavaScript does something the way it does,
helps with dealing with the quirks and with accepting JavaScript (maybe even liking it).
Hopefully, this book can be of assistance here.
Additionally, many traditional quirks have been eliminated now. For example:

• Traditionally, JavaScript variables weren’t block-scoped. ES6 introduced let and
const, which let you declare block-scoped variables.

• Prior to ES6, implementing object factories and inheritance via function and .pro-
totype was clumsy. ES6 introduced classes, which provide more convenient syn-
tax for these mechanisms.

23

24 3 Why JavaScript? (bonus)

• Traditionally, JavaScript did not have built-in modules. ES6 added them to the
language.

Lastly, JavaScript’s standard library is limited, but:
• There are plans for adding more functionality.
• Many libraries are easily available via the npm software registry.

3.2 The pros of JavaScript
On the plus side, JavaScript offers many benefits.

3.2.1 Community
JavaScript’s popularity means that it’s well supported and well documented. Whenever
you create something in JavaScript, you can rely on many people being (potentially) in-
terested. And there is a large pool of JavaScript programmers from which you can hire,
if you need to.
No single party controls JavaScript – it is evolved by TC39, a committee comprisingmany
organizations. The language is evolved via an open process that encourages feedback
from the public.

3.2.2 Practically useful
With JavaScript, you can write apps for many client platforms. These are a few example
technologies:

• Progressive Web Apps can be installed natively on Android and many desktop oper-
ating systems.

• Electron lets you build cross-platform desktop apps.
• React Native lets you write apps for iOS and Android that have native user inter-
faces.

• Node.js provides extensive support for writing shell scripts (in addition to being a
platform for web servers).

JavaScript is supported by many server platforms and services – for example:
• Node.js (many of the following services are based on Node.js or support its APIs)
• ZEIT Now
• Microsoft Azure Functions
• AWS Lambda
• Google Cloud Functions

There are many data technologies available for JavaScript: many databases support it
and intermediate layers (such as GraphQL) exist. Additionally, the standard data format
JSON (JavaScript Object Notation) is based on JavaScript and supported by its standard
library.
Lastly, many, if notmost, tools for JavaScript arewritten in JavaScript. That includes IDEs,
build tools, and more. As a consequence, you install them the same way you install your
libraries and you can customize them in JavaScript.

https://github.com/tc39/proposal-javascript-standard-library
https://www.npmjs.com
https://developers.google.com/web/progressive-web-apps/
https://electronjs.org
https://facebook.github.io/react-native/
https://nodejs.org/

3.3 Pro and con of JavaScript: innovation 25

3.2.3 Language
• Many libraries are available, via the de-facto standard in the JavaScript universe,
the npm software registry.

• If you are unhappy with “plain” JavaScript, it is relatively easy to add more fea-
tures:

– You can compile future and modern language features to current and past
versions of JavaScript, via Babel.

– You can add static typing, via TypeScript and Flow.
– You canworkwith ReasonML, which is, roughly, OCamlwith JavaScript syn-
tax. It can be compiled to JavaScript or native code.

• The language is flexible: it is dynamic and supports both object-oriented program-
ming and functional programming.

• JavaScript has become suprisingly fast for such a dynamic language.
– Whenever it isn’t fast enough, you can switch to WebAssembly, a universal
virtual machine built into most JavaScript engines. It can run static code at
nearly native speeds.

3.3 Pro and con of JavaScript: innovation
There is much innovation in the JavaScript ecosystem: new approaches to implementing
user interfaces, newways of optimizing the delivery of software, andmore. The upside is
that you will constantly learn new things. The downside is that the constant change can
be exhausting at times. Thankfully, things have somewhat slowed down, recently: all of
ES6 (which was a considerable modernization of the language) is becoming established,
as are certain tools and workflows.

Quiz
See quiz app.

https://www.npmjs.com
https://babeljs.io
https://www.typescriptlang.org
https://flow.org

26 3 Why JavaScript? (bonus)

Chapter 4

The nature of JavaScript (bonus)

Contents
4.1 JavaScript’s influences . 27
4.2 The nature of JavaScript . 27

4.2.1 JavaScript often fails silently 28
4.3 Tips for getting started with JavaScript 28

4.1 JavaScript’s influences
When JavaScript was created in 1995, it was influenced by several programming lan-
guages:

• JavaScript’s syntax is largely based on Java.
• Self inspired JavaScript’s prototypal inheritance.
• Closures and environments were borrowed from Scheme.
• AWK influenced JavaScript’s functions (including the keyword function).
• JavaScript’s strings, Arrays, and regular expressions take cues from Perl.
• HyperTalk inspired event handling via onclick in web browsers.

With ECMAScript 6, new influences came to JavaScript:
• Generators were borrowed from Python.
• The syntax of arrow functions came from CoffeeScript.
• C++ contributed the keyword const.
• Destructuring was inspired by Lisp’s destructuring bind.
• Template literals came from the E language (where they are called quasi literals).

4.2 The nature of JavaScript
These are a few traits of the language:

• Its syntax is part of the C family of languages (curly braces, etc.).

27

28 4 The nature of JavaScript (bonus)

• It is a dynamic language: most objects can be changed in various ways at runtime,
objects can be created directly, etc.

• It is a dynamically typed language: variables don’t have fixed static types and you
can assign any value to a given (mutable) variable.

• It has functional programming features: first-class functions, closures, partial ap-
plication via bind(), etc.

• It has object-oriented features: mutable state, objects, inheritance, classes, etc.
• It often fails silently: see the next subsection for details.
• It is deployed as source code. But that source code is often minified (rewritten to
require less storage). And there are plans for a binary source code format.

• JavaScript is part of the web platform – it is the language built into web browsers.
But it is also used elsewhere – for example, in Node.js, for server things, and shell
scripting.

• JavaScript engines often optimize less-efficient language mechanisms under the
hood. For example, in principle, JavaScript Arrays are dictionaries. But under the
hood, engines store Arrays contiguously if they have contiguous indices.

4.2.1 JavaScript often fails silently
JavaScript often fails silently. Let’s look at two examples.
First example: If the operands of an operator don’t have the appropriate types, they are
converted as necessary.

> '3' * '5'
15

Second example: If an arithmetic computation fails, you get an error value, not an excep-
tion.

> 1 / 0
Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until
ECMAScript 3. Since then, its designers have tried to avoid silent failures.

4.3 Tips for getting started with JavaScript
These are a few tips to help you get started with JavaScript:

• Take your time to really get to know this language. The conventional C-style syntax
hides that this is a very unconventional language. Learn especially the quirks and
the rationales behind them. Then youwill understand and appreciate the language
better.

– In addition to details, this book also teaches simple rules of thumb to be safe
– for example, “Always use === to determine if two values are equal, never
==.”

https://github.com/tc39/proposal-binary-ast

4.3 Tips for getting started with JavaScript 29

• Language tools make it easier to work with JavaScript. For example:
– You can statically type JavaScript via TypeScript or Flow.
– You can check for problems and anti-patterns via linters such as ESLint.
– You can format your code automatically via code formatters such as Prettier.

• Get in contact with the community:
– Twitter is popular among JavaScript programmers. As a mode of communi-
cation that sits between the spoken and the written word, it is well suited for
exchanging knowledge.

– Many cities have regular free meetups where people come together to learn
topics related to JavaScript.

– JavaScript conferences are another convenient way of meeting other
JavaScript programmers.

• Read books and blogs. Much material is free online!

https://www.typescriptlang.org
https://flow.org
https://eslint.org
https://prettier.io

30 4 The nature of JavaScript (bonus)

Chapter 5

History and evolution of
JavaScript

Contents
5.1 How JavaScript was created . 31
5.2 Standardizing JavaScript . 32
5.3 Timeline of ECMAScript versions 32
5.4 Ecma Technical Committee 39 (TC39) 33
5.5 The TC39 process . 33

5.5.1 Tip: Think in individual features and stages, not ECMAScript
versions . 33

5.6 FAQ: TC39 process . 35
5.6.1 How is [my favorite proposed feature] doing? 35
5.6.2 Is there an official list of ECMAScript features? 35

5.7 Evolving JavaScript: Don’t break the web 35

5.1 How JavaScript was created
JavaScriptwas created inMay 1995 in 10 days, by Brendan Eich. Eichworked atNetscape
and implemented JavaScript for their web browser, Netscape Navigator.
The idea was that major interactive parts of the client-side web were to be implemented
in Java. JavaScript was supposed to be a glue language for those parts and to also make
HTML slightly more interactive. Given its role of assisting Java, JavaScript had to look
like Java. That ruled out existing solutions such as Perl, Python, TCL, and others.
Initially, JavaScript’s name changed several times:

• Its code name wasMocha.
• In the Netscape Navigator 2.0 betas (September 1995), it was called LiveScript.
• In Netscape Navigator 2.0 beta 3 (December 1995), it got its final name, JavaScript.

31

32 5 History and evolution of JavaScript

5.2 Standardizing JavaScript
There are two standards for JavaScript:

• ECMA-262 is hosted by Ecma International. It is the primary standard.
• ISO/IEC 16262 is hosted by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC). This is a secondary
standard.

The language described by these standards is called ECMAScript, not JavaScript. A differ-
ent namewas chosen because Sun (nowOracle) had a trademark for the latter name. The
“ECMA” in “ECMAScript” comes from the organization that hosts the primary standard.

The original name of that organization was ECMA, an acronym for European Computer
Manufacturers Association. It was later changed to Ecma International (with “Ecma” being
a proper name, not an acronym) because the organization’s activities had expanded be-
yond Europe. The initial all-caps acronym explains the spelling of ECMAScript.
In principle, JavaScript and ECMAScript mean the same thing. Sometimes the following
distinction is made:

• The term JavaScript refers to the language and its implementations.
• The term ECMAScript refers to the language standard and language versions.

Therefore, ECMAScript 6 is a version of the language (its 6th edition).

5.3 Timeline of ECMAScript versions
This is a brief timeline of ECMAScript versions:

• ECMAScript 1 (June 1997): First version of the standard.
• ECMAScript 2 (June 1998): Small update to keep ECMA-262 in sync with the ISO
standard.

• ECMAScript 3 (December 1999): Adds many core features – “[…] regular expres-
sions, better string handling, new control statements [do-while, switch], try/catch
exception handling, […]”

• ECMAScript 4 (abandoned in July 2008): Would have been a massive upgrade
(with static typing, modules, namespaces, and more), but ended up being too am-
bitious and dividing the language’s stewards.

• ECMAScript 5 (December 2009): Brought minor improvements – a few standard
library features and strict mode.

• ECMAScript 5.1 (June 2011): Another small update to keep Ecma and ISO stan-
dards in sync.

• ECMAScript 6 (June 2015): A large update that fulfilled many of the promises of
ECMAScript 4. This version is the first one whose official name – ECMAScript 2015
– is based on the year of publication.

• ECMAScript 2016 (June 2016): First yearly release. The shorter release life cycle
resulted in fewer new features compared to the large ES6.

• ECMAScript 2017 (June 2017). Second yearly release.
• Subsequent ECMAScript versions (ES2018, etc.) are always ratified in June.

5.4 Ecma Technical Committee 39 (TC39) 33

5.4 Ecma Technical Committee 39 (TC39)
TC39 is the committee that evolves JavaScript. Its member are, strictly speaking, com-
panies: Adobe, Apple, Facebook, Google, Microsoft, Mozilla, Opera, Twitter, and others.
That is, companies that are usually fierce competitors are working together for the good
of the language.

Every two months, TC39 has meetings that member-appointed delegates and invited
experts attend. The minutes of those meetings are public in a GitHub repository.

5.5 The TC39 process
With ECMAScript 6, two issueswith the release process used at that time became obvious:

• If too much time passes between releases then features that are ready early, have
to wait a long time until they can be released. And features that are ready late, risk
being rushed to make the deadline.

• Features were often designed long before they were implemented and used. De-
sign deficiencies related to implementation and use were therefore discovered too
late.

In response to these issues, TC39 instituted the new TC39 process:

• ECMAScript features are designed independently and go through stages, starting
at 0 (“strawman”), ending at 4 (“finished”).

• Especially the later stages require prototype implementations and real-world test-
ing, leading to feedback loops between designs and implementations.

• ECMAScript versions are released once per year and include all features that have
reached stage 4 prior to a release deadline.

The result: smaller, incremental releases, whose features have already been field-tested.
Fig. 5.1 illustrates the TC39 process.

ES2016 was the first ECMAScript version that was designed according to the TC39 pro-
cess.

5.5.1 Tip: Think in individual features and stages, not ECMAScript
versions

Up to and including ES6, it was most common to think about JavaScript in terms of
ECMAScript versions – for example, “Does this browser support ES6 yet?”

Starting with ES2016, it’s better to think in individual features: once a feature reaches
stage 4, you can safely use it (if it’s supported by the JavaScript engines you are targeting).
You don’t have to wait until the next ECMAScript release.

https://github.com/tc39/tc39-notes/

34 5 History and evolution of JavaScript

Stage 0: strawman

Stage 1: proposal

Stage 2: draft

Stage 3: candidate

Stage 4: finished

Pick champions

First spec text, 2 implementations

Spec complete

Test 262 acceptance tests

Review at TC39 meeting

TC39 helps

Likely to be standardized

Done, needs feedback from implementations

Ready for standardization

Sketch

Figure 5.1: Each ECMAScript feature proposal goes through stages that are numbered
from 0 to 4. Champions are TC39 members that support the authors of a feature. Test
262 is a suite of tests that checks JavaScript engines for compliance with the language
specification.

5.6 FAQ: TC39 process 35

5.6 FAQ: TC39 process
5.6.1 How is [my favorite proposed feature] doing?
If you are wondering what stages various proposed features are in, consult the GitHub
repository proposals.

5.6.2 Is there an official list of ECMAScript features?
Yes, the TC39 repo lists finished proposals and mentions in which ECMAScript versions
they were introduced.

5.7 Evolving JavaScript: Don’t break the web
One idea that occasionally comes up is to clean up JavaScript by removing old features
and quirks. While the appeal of that idea is obvious, it has significant downsides.
Let’s assume we create a new version of JavaScript that is not backward compatible and
fix all of its flaws. As a result, we’d encounter the following problems:

• JavaScript engines become bloated: they need to support both the old and the new
version. The same is true for tools such as IDEs and build tools.

• Programmers need to know, and be continually conscious of, the differences be-
tween the versions.

• You can either migrate all of an existing code base to the new version (which can
be a lot of work). Or you canmix versions and refactoring becomes harder because
you can’t move code between versions without changing it.

• You somehow have to specify per piece of code – be it a file or code embedded in
a web page – what version it is written in. Every conceivable solution has pros
and cons. For example, strict mode is a slightly cleaner version of ES5. One of the
reasons why it wasn’t as popular as it should have been: it was a hassle to opt in
via a directive at the beginning of a file or a function.

So what is the solution? Can we have our cake and eat it? The approach that was chosen
for ES6 is called “One JavaScript”:

• New versions are always completely backward compatible (but there may occa-
sionally be minor, hardly noticeable clean-ups).

• Old features aren’t removed or fixed. Instead, better versions of them are intro-
duced. One example is declaring variables via let – which is an improved version
of var.

• If aspects of the language are changed, it is done inside new syntactic constructs.
That is, you opt in implicitly. For example, yield is only a keyword inside gen-
erators (which were introduced in ES6). And all code inside modules and classes
(both introduced in ES6) is implicitly in strict mode.

Quiz
See quiz app.

https://github.com/tc39/proposals
https://github.com/tc39/proposals
https://github.com/tc39/proposals/blob/master/finished-proposals.md

36 5 History and evolution of JavaScript

Chapter 6

FAQ: JavaScript

Contents
6.1 What are good references for JavaScript? 37
6.2 How do I find out what JavaScript features are supported where? . . 37
6.3 Where can I look up what features are planned for JavaScript? . . . 38
6.4 Why does JavaScript fail silently so often? 38
6.5 Why can’t we clean up JavaScript, by removing quirks and outdated

features? . 38
6.6 How can I quickly try out a piece of JavaScript code? 38

6.1 What are good references for JavaScript?
Please consult §7.3 “JavaScript references”.

6.2 How do I find out what JavaScript features are sup-
ported where?

This book usually mentions if a feature is part of ECMAScript 5 (as required by older
browsers) or a newer version. For more detailed information (including pre-ES5 ver-
sions), there are several good compatibility tables available online:

• ECMAScript compatibility tables for various engines (by kangax, webbedspace,
zloirock)

• Node.js compatibility tables (by William Kapke)
• Mozilla’sMDNweb docs have tables for each feature that describe relevant ECMA-
Script versions and browser support.

• “Can I use…” documents what features (including JavaScript language features)
are supported by web browsers.

37

http://kangax.github.io/compat-table/es5/
https://twitter.com/kangax
https://twitter.com/webbedspace
https://twitter.com/zloirock
https://node.green
https://twitter.com/williamkapke
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://caniuse.com/

38 6 FAQ: JavaScript

6.3 Where can I look up what features are planned for
JavaScript?

Please consult the following sources:
• §5.5 “The TC39 process” describes how upcoming features are planned.
• §5.6 “FAQ: TC39 process” answers various questions regarding upcoming features.

6.4 Why does JavaScript fail silently so often?
JavaScript often fails silently. Let’s look at two examples.
First example: If the operands of an operator don’t have the appropriate types, they are
converted as necessary.

> '3' * '5'
15

Second example: If an arithmetic computation fails, you get an error value, not an excep-
tion.

> 1 / 0
Infinity

The reason for the silent failures is historical: JavaScript did not have exceptions until
ECMAScript 3. Since then, its designers have tried to avoid silent failures.

6.5 Why can’t we clean up JavaScript, by removing quirks
and outdated features?

This question is answered in §5.7 “Evolving JavaScript: Don’t break the web”.

6.6 How can I quickly try out a piece of JavaScript code?
§9.1 “Trying out JavaScript code” explains how to do that.

Part II

First steps

39

Chapter 7

The big picture

Contents
7.1 What are you learning in this book? 41
7.2 The structure of browsers and Node.js 41
7.3 JavaScript references . 42
7.4 Further reading . 42

In this chapter, I’d like to paint the big picture: what are you learning in this book, and
how does it fit into the overall landscape of web development?

7.1 What are you learning in this book?
This book teaches the JavaScript language. It focuses on just the language, but offers
occasional glimpses at two platforms where JavaScript can be used:

• Web browser
• Node.js

Node.js is important for web development in three ways:
• You can use it to write server-side software in JavaScript.
• You can also use it to write software for the command line (think Unix shell, Win-
dows PowerShell, etc.). Many JavaScript-related tools are based on (and executed
via) Node.js.

• Node’s software registry, npm, has become the dominant way of installing tools
(such as compilers and build tools) and libraries – even for client-side development.

7.2 The structure of browsers and Node.js
The structures of the two JavaScript platformsweb browser andNode.js are similar (fig. 7.1):

• The foundational layer consists of the JavaScript engine and platform-specific
“core” functionality.

41

42 7 The big picture

JavaScript engine Platform core

JS standard
library Platform API

Figure 7.1: The structure of the two JavaScript platforms web browser and Node.js. The
APIs “standard library” and “platform API” are hosted on top of a foundational layer
with a JavaScript engine and a platform-specific “core”.

• Two APIs are hosted on top of this foundation:
– The JavaScript standard library is part of JavaScript proper and runs on top
of the engine.

– The platform API are also available from JavaScript – it provides access to
platform-specific functionality. For example:
* In browsers, you need to use the platform-specific API if you want to do
anything related to the user interface: react to mouse clicks, play sounds,
etc.

* In Node.js, the platform-specific API lets you read and write files, down-
load data via HTTP, etc.

7.3 JavaScript references
When you have a question about a JavaScript, a web search usually helps. I can recom-
mend the following online sources:

• MDN web docs: cover various web technologies such as CSS, HTML, JavaScript,
and more. An excellent reference.

• Node.js Docs: document the Node.js API.
• ExploringJS.com: My other books on JavaScript go into greater detail than this
book and are free to read online. You can look up features by ECMAScript version:

– ES1–ES5: Speaking JavaScript
– ES6: Exploring ES6
– ES2016–ES2017: Exploring ES2016 and ES2017
– Etc.

7.4 Further reading
• §46 “Next steps: overview of web development” provides a more comprehensive
look at web development.

https://developer.mozilla.org/en-US/
https://nodejs.org/en/docs/
https://exploringjs.com
http://speakingjs.com/
https://exploringjs.com/es6.html
https://exploringjs.com/es2016-es2017.html

Chapter 8

Syntax

Contents
8.1 An overview of JavaScript’s syntax 44

8.1.1 Basic syntax . 44
8.1.2 Modules . 46
8.1.3 Legal variable and property names 47
8.1.4 Casing styles . 47
8.1.5 Capitalization of names . 47
8.1.6 More naming conventions . 48
8.1.7 Where to put semicolons? . 48

8.2 (Advanced) . 49
8.3 Identifiers . 49

8.3.1 Valid identifiers (variable names, etc.) 49
8.3.2 Reserved words . 49

8.4 Statement vs. expression . 50
8.4.1 Statements . 50
8.4.2 Expressions . 50
8.4.3 What is allowed where? . 51

8.5 Ambiguous syntax . 51
8.5.1 Same syntax: function declaration and function expression . . 51
8.5.2 Same syntax: object literal and block 52
8.5.3 Disambiguation . 52

8.6 Semicolons . 52
8.6.1 Rule of thumb for semicolons 52
8.6.2 Semicolons: control statements 53

8.7 Automatic semicolon insertion (ASI) 53
8.7.1 ASI triggered unexpectedly 54
8.7.2 ASI unexpectedly not triggered 54

8.8 Semicolons: best practices . 55
8.9 Strict mode vs. sloppy mode . 55

43

44 8 Syntax

8.9.1 Switching on strict mode . 56
8.9.2 Improvements in strict mode 56

8.1 An overview of JavaScript’s syntax
8.1.1 Basic syntax
Comments:

// single-line comment

/*
Comment with
multiple lines
*/

Primitive (atomic) values:
// Booleans
true
false

// Numbers (JavaScript only has a single type for numbers)
-123
1.141

// Strings (JavaScript has no type for characters)
'abc'
"abc"

An assertiondescribeswhat the result of a computation is expected to look like and throws
an exception if those expectations aren’t correct. For example, the following assertion
states that the result of the computation 7 plus 1 must be 8:

assert.equal(7 + 1, 8);

assert.equal() is a method call (the object is assert, the method is .equal()) with two
arguments: the actual result and the expected result. It is part of a Node.js assertion API
that is explained later in this book.
Logging to the console of a browser or Node.js:

// Printing a value to standard out (another method call)
console.log('Hello!');

// Printing error information to standard error
console.error('Something went wrong!');

Operators:
// Operators for booleans
assert.equal(true && false, false); // And

8.1 An overview of JavaScript’s syntax 45

assert.equal(true || false, true); // Or

// Operators for numbers
assert.equal(3 + 4, 7);
assert.equal(5 - 1, 4);
assert.equal(3 * 4, 12);
assert.equal(9 / 3, 3);

// Operators for strings
assert.equal('a' + 'b', 'ab');
assert.equal('I see ' + 3 + ' monkeys', 'I see 3 monkeys');

// Comparison operators
assert.equal(3 < 4, true);
assert.equal(3 <= 4, true);
assert.equal('abc' === 'abc', true);
assert.equal('abc' !== 'def', true);

Declaring variables:
let x; // declaring x (mutable)
x = 3 * 5; // assign a value to x

let y = 3 * 5; // declaring and assigning

const z = 8; // declaring z (immutable)

Control flow statements:
// Conditional statement
if (x < 0) { // is x less than zero?

x = -x;
}

Ordinary function declarations:
// add1() has the parameters a and b
function add1(a, b) {

return a + b;
}
// Calling function add1()
assert.equal(add1(5, 2), 7);

Arrow function expressions (used especially as arguments of function calls and method
calls):

const add2 = (a, b) => { return a + b };
// Calling function add2()
assert.equal(add2(5, 2), 7);

// Equivalent to add2:
const add3 = (a, b) => a + b;

46 8 Syntax

The previous code contains the following two arrow functions (the terms expression and
statement are explained later in this chapter):

// An arrow function whose body is a code block
(a, b) => { return a + b }

// An arrow function whose body is an expression
(a, b) => a + b

Objects:

// Creating a plain object via an object literal
const obj = {

first: 'Jane', // property
last: 'Doe', // property
getFullName() { // property (method)

return this.first + ' ' + this.last;
},

};

// Getting a property value
assert.equal(obj.first, 'Jane');
// Setting a property value
obj.first = 'Janey';

// Calling the method
assert.equal(obj.getFullName(), 'Janey Doe');

Arrays (Arrays are also objects):

// Creating an Array via an Array literal
const arr = ['a', 'b', 'c'];

// Getting an Array element
assert.equal(arr[1], 'b');
// Setting an Array element
arr[1] = 'β';

8.1.2 Modules
Each module is a single file. Consider, for example, the following two files with modules
in them:

file-tools.mjs
main.mjs

The module in file-tools.mjs exports its function isTextFilePath():

export function isTextFilePath(filePath) {
return filePath.endsWith('.txt');

}

8.1 An overview of JavaScript’s syntax 47

The module in main.mjs imports the whole module path and the function is-
TextFilePath():

// Import whole module as namespace object `path`
import * as path from 'path';
// Import a single export of module file-tools.mjs
import {isTextFilePath} from './file-tools.mjs';

8.1.3 Legal variable and property names
The grammatical category of variable names and property names is called identifier.
Identifiers are allowed to have the following characters:

• Unicode letters: A–Z, a–z (etc.)
• $, _
• Unicode digits: 0–9 (etc.)

– Variable names can’t start with a digit
Somewords have specialmeaning in JavaScript and are called reserved. Examples include:
if, true, const.
Reserved words can’t be used as variable names:

const if = 123;
// SyntaxError: Unexpected token if

But they are allowed as names of properties:
> const obj = { if: 123 };
> obj.if
123

8.1.4 Casing styles
Common casing styles for concatenating words are:

• Camel case: threeConcatenatedWords
• Underscore case (also called snake case): three_concatenated_words
• Dash case (also called kebab case): three-concatenated-words

8.1.5 Capitalization of names
In general, JavaScript uses camel case, except for constants.
Lowercase:

• Functions, variables: myFunction
• Methods: obj.myMethod
• CSS:

– CSS entity: special-class
– Corresponding JavaScript variable: specialClass

Uppercase:

48 8 Syntax

• Classes: MyClass
• Constants: MY_CONSTANT

– Constants are also often written in camel case: myConstant

8.1.6 More naming conventions
The following naming conventions are popular in JavaScript.

If the name of a parameter starts with an underscore (or is an underscore) it means that
this parameter is not used – for example:

arr.map((_x, i) => i)

If the name of a property of an object starts with an underscore then that property is
considered private:

class ValueWrapper {
constructor(value) {

this._value = value;
}

}

8.1.7 Where to put semicolons?
At the end of a statement:

const x = 123;
func();

But not if that statement ends with a curly brace:

while (false) {
// ···

} // no semicolon

function func() {
// ···

} // no semicolon

However, adding a semicolon after such a statement is not a syntax error – it is interpreted
as an empty statement:

// Function declaration followed by empty statement:
function func() {

// ···
};

Quiz: basic
See quiz app.

8.2 (Advanced) 49

8.2 (Advanced)
All remaining sections of this chapter are advanced.

8.3 Identifiers
8.3.1 Valid identifiers (variable names, etc.)
First character:

• Unicode letter (including accented characters such as é and ü and characters from
non-latin alphabets, such as α)

• $
• _

Subsequent characters:
• Legal first characters
• Unicode digits (including Eastern Arabic numerals)
• Some other Unicode marks and punctuations

Examples:
const ε = 0.0001;
const строка = '';
let _tmp = 0;
const $foo2 = true;

8.3.2 Reserved words
Reserved words can’t be variable names, but they can be property names.
All JavaScript keywords are reserved words:

await break case catch class const continue debugger default delete
do else export extends finally for function if import in instanceof
let new return static super switch this throw try typeof var void while
with yield

The following tokens are also keywords, but currently not used in the language:
enum implements package protected interface private public

The following literals are reserved words:
true false null

Technically, these words are not reserved, but you should avoid them, too, because they
effectively are keywords:

Infinity NaN undefined async

You shouldn’t use the names of global variables (String, Math, etc.) for your own vari-
ables and parameters, either.

50 8 Syntax

8.4 Statement vs. expression
In this section, we explore how JavaScript distinguishes two kinds of syntactic constructs:
statements and expressions. Afterward, we’ll see that that can cause problems because the
same syntax can mean different things, depending on where it is used.

We pretend there are only statements and expressions
For the sake of simplicity, we pretend that there are only statements and expressions
in JavaScript.

8.4.1 Statements
A statement is a piece of code that can be executed and performs some kind of action. For
example, if is a statement:

let myStr;
if (myBool) {

myStr = 'Yes';
} else {

myStr = 'No';
}

One more example of a statement: a function declaration.

function twice(x) {
return x + x;

}

8.4.2 Expressions
An expression is a piece of code that can be evaluated to produce a value. For example, the
code between the parentheses is an expression:

let myStr = (myBool ? 'Yes' : 'No');

The operator _?_:_ used between the parentheses is called the ternary operator. It is the
expression version of the if statement.

Let’s look atmore examples of expressions. We enter expressions and the REPL evaluates
them for us:

> 'ab' + 'cd'
'abcd'
> Number('123')
123
> true || false
true

8.5 Ambiguous syntax 51

8.4.3 What is allowed where?
The current location within JavaScript source code determines which kind of syntactic
constructs you are allowed to use:

• The body of a function must be a sequence of statements:

function max(x, y) {
if (x > y) {

return x;
} else {

return y;
}

}

• The arguments of a function call or a method call must be expressions:

console.log('ab' + 'cd', Number('123'));

However, expressions can be used as statements. Then they are called expression state-
ments. The opposite is not true: when the context requires an expression, you can’t use a
statement.

The following code demonstrates that any expression bar() can be either expression or
statement – it depends on the context:

function f() {
console.log(bar()); // bar() is expression
bar(); // bar(); is (expression) statement

}

8.5 Ambiguous syntax
JavaScript has several programming constructs that are syntactically ambiguous: the
same syntax is interpreted differently, depending on whether it is used in statement con-
text or in expression context. This section explores the phenomenon and the pitfalls it
causes.

8.5.1 Same syntax: function declaration and function expression
A function declaration is a statement:

function id(x) {
return x;

}

A function expression is an expression (right-hand side of =):

const id = function me(x) {
return x;

};

52 8 Syntax

8.5.2 Same syntax: object literal and block
In the following code, {} is an object literal: an expression that creates an empty object.

const obj = {};

This is an empty code block (a statement):

{
}

8.5.3 Disambiguation
The ambiguities are only a problem in statement context: If the JavaScript parser encoun-
ters ambiguous syntax, it doesn’t know if it’s a plain statement or an expression statement.
For example:

• If a statement starts with function: Is it a function declaration or a function expres-
sion?

• If a statement starts with {: Is it an object literal or a code block?

To resolve the ambiguity, statements starting with function or { are never interpreted as
expressions. If you want an expression statement to start with either one of these tokens,
you must wrap it in parentheses:

(function (x) { console.log(x) })('abc');

// Output:
// 'abc'

In this code:

1. We first create a function via a function expression:

function (x) { console.log(x) }

2. Then we invoke that function: ('abc')

The code fragment shown in (1) is only interpreted as an expression becausewewrap it in
parentheses. If we didn’t, we would get a syntax error because then JavaScript expects a
function declaration and complains about the missing function name. Additionally, you
can’t put a function call immediately after a function declaration.

Later in this book, we’ll see more examples of pitfalls caused by syntactic ambiguity:

• Assigning via object destructuring
• Returning an object literal from an arrow function

8.6 Semicolons
8.6.1 Rule of thumb for semicolons
Each statement is terminated by a semicolon:

8.7 Automatic semicolon insertion (ASI) 53

const x = 3;
someFunction('abc');
i++;

except statements ending with blocks:
function foo() {

// ···
}
if (y > 0) {

// ···
}

The following case is slightly tricky:
const func = () => {}; // semicolon!

The whole const declaration (a statement) ends with a semicolon, but inside it, there is
an arrow function expression. That is, it’s not the statement per se that ends with a curly
brace; it’s the embedded arrow function expression. That’s why there is a semicolon at
the end.

8.6.2 Semicolons: control statements
The body of a control statement is itself a statement. For example, this is the syntax of
the while loop:

while (condition)
statement

The body can be a single statement:
while (a > 0) a--;

But blocks are also statements and therefore legal bodies of control statements:
while (a > 0) {

a--;
}

If youwant a loop to have an empty body, your first option is an empty statement (which
is just a semicolon):

while (processNextItem() > 0);

Your second option is an empty block:
while (processNextItem() > 0) {}

8.7 Automatic semicolon insertion (ASI)
While I recommend to always write semicolons, most of them are optional in JavaScript.
The mechanism that makes this possible is called automatic semicolon insertion (ASI). In a
way, it corrects syntax errors.

54 8 Syntax

ASI works as follows. Parsing of a statement continues until there is either:
• A semicolon
• A line terminator followed by an illegal token

In other words, ASI can be seen as inserting semicolons at line breaks. The next subsec-
tions cover the pitfalls of ASI.

8.7.1 ASI triggered unexpectedly
The good news about ASI is that – if you don’t rely on it and always write semicolons
– there is only one pitfall that you need to be aware of. It is that JavaScript forbids line
breaks after some tokens. If you do insert a line break, a semicolon will be inserted, too.
The token where this is most practically relevant is return. Consider, for example, the
following code:

return
{

first: 'jane'
};

This code is parsed as:
return;
{

first: 'jane';
}
;

That is:
• Return statement without operand: return;
• Start of code block: {
• Expression statement 'jane'; with label first:
• End of code block: }
• Empty statement: ;

Why does JavaScript do this? It protects against accidentally returning a value in a line
after a return.

8.7.2 ASI unexpectedly not triggered
In some cases, ASI is not triggered when you think it should be. That makes life more
complicated for people who don’t like semicolons because they need to be aware of those
cases. The following are three examples. There are more.
Example 1: Unintended function call.

a = b + c
(d + e).print()

Parsed as:
a = b + c(d + e).print();

8.8 Semicolons: best practices 55

Example 2: Unintended division.

a = b
/hi/g.exec(c).map(d)

Parsed as:

a = b / hi / g.exec(c).map(d);

Example 3: Unintended property access.

someFunction()
['ul', 'ol'].map(x => x + x)

Executed as:

const propKey = ('ul','ol'); // comma operator
assert.equal(propKey, 'ol');

someFunction()[propKey].map(x => x + x);

8.8 Semicolons: best practices
I recommend that you always write semicolons:

• I like the visual structure it gives code – you clearly see when a statement ends.
• There are less rules to keep in mind.
• The majority of JavaScript programmers use semicolons.

However, there are also many people who don’t like the added visual clutter of semi-
colons. If you are one of them: Code without them is legal. I recommend that you use
tools to help you avoid mistakes. The following are two examples:

• The automatic code formatter Prettier can be configured to not use semicolons. It
then automatically fixes problems. For example, if it encounters a line that starts
with a square bracket, it prefixes that line with a semicolon.

• The static checker ESLint has a rule that you tell your preferred style (always semi-
colons or as few semicolons as possible) and that warns you about critical issues.

8.9 Strict mode vs. sloppy mode
Starting with ECMAScript 5, JavaScript has two modes in which JavaScript can be exe-
cuted:

• Normal “sloppy”mode is the default in scripts (code fragments that are a precursor
to modules and supported by browsers).

• Strict mode is the default in modules and classes, and can be switched on in scripts
(how, is explained later). In thismode, several pitfalls of normalmode are removed
and more exceptions are thrown.

You’ll rarely encounter sloppy mode in modern JavaScript code, which is almost always
located in modules. In this book, I assume that strict mode is always switched on.

https://prettier.io
https://eslint.org
https://eslint.org/docs/rules/semi

56 8 Syntax

8.9.1 Switching on strict mode
In script files and CommonJS modules, you switch on strict mode for a complete file, by
putting the following code in the first line:

'use strict';

The neat thing about this “directive” is that ECMAScript versions before 5 simply ignore
it: it’s an expression statement that does nothing.

You can also switch on strict mode for just a single function:

function functionInStrictMode() {
'use strict';

}

8.9.2 Improvements in strict mode
Let’s look at three things that strict mode does better than sloppy mode. Just in this one
section, all code fragments are executed in sloppy mode.

8.9.2.1 Sloppy mode pitfall: changing an undeclared variable creates a global vari-
able

In non-strict mode, changing an undeclared variable creates a global variable.

function sloppyFunc() {
undeclaredVar1 = 123;

}
sloppyFunc();
// Created global variable `undeclaredVar1`:
assert.equal(undeclaredVar1, 123);

Strict mode does it better and throws a ReferenceError. That makes it easier to detect
typos.

function strictFunc() {
'use strict';
undeclaredVar2 = 123;

}
assert.throws(

() => strictFunc(),
{

name: 'ReferenceError',
message: 'undeclaredVar2 is not defined',

});

The assert.throws() states that its first argument, a function, throws a ReferenceError
when it is called.

8.9 Strict mode vs. sloppy mode 57

8.9.2.2 Function declarations are block-scoped in strict mode, function-scoped in
sloppy mode

In strict mode, a variable created via a function declaration only exists within the inner-
most enclosing block:

function strictFunc() {
'use strict';
{

function foo() { return 123 }
}
return foo(); // ReferenceError

}
assert.throws(

() => strictFunc(),
{

name: 'ReferenceError',
message: 'foo is not defined',

});

In sloppy mode, function declarations are function-scoped:
function sloppyFunc() {

{
function foo() { return 123 }

}
return foo(); // works

}
assert.equal(sloppyFunc(), 123);

8.9.2.3 Sloppy mode doesn’t throw exceptions when changing immutable data
In strict mode, you get an exception if you try to change immutable data:

function strictFunc() {
'use strict';
true.prop = 1; // TypeError

}
assert.throws(

() => strictFunc(),
{

name: 'TypeError',
message: "Cannot create property 'prop' on boolean 'true'",

});

In sloppy mode, the assignment fails silently:
function sloppyFunc() {

true.prop = 1; // fails silently
return true.prop;

}
assert.equal(sloppyFunc(), undefined);

58 8 Syntax

Further reading: sloppy mode
For more information on how sloppy mode differs from strict mode, see MDN.

Quiz: advanced
See quiz app.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 9

Consoles: interactive JavaScript
command lines

Contents
9.1 Trying out JavaScript code . 59

9.1.1 Browser consoles . 59
9.1.2 The Node.js REPL . 61
9.1.3 Other options . 61

9.2 The console.* API: printing data and more 61
9.2.1 Printing values: console.log() (stdout) 62
9.2.2 Printing error information: console.error() (stderr) 63
9.2.3 Printing nested objects via JSON.stringify() 63

9.1 Trying out JavaScript code
You have many options for quickly running pieces of JavaScript code. The following
subsections describe a few of them.

9.1.1 Browser consoles
Web browsers have so-called consoles: interactive command lines to which you can print
text via console.log() and where you can run pieces of code. How to open the console
differs from browser to browser. Fig. 9.1 shows the console of Google Chrome.
To find out how to open the console in your web browser, you can do a web search
for “console «name-of-your-browser»”. These are pages for a few commonly used web
browsers:

• Apple Safari
• Google Chrome
• Microsoft Edge
• Mozilla Firefox

59

https://developer.apple.com/safari/tools/
https://developers.google.com/web/tools/chrome-devtools/console/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console
https://developer.mozilla.org/en-US/docs/Tools/Web_Console/Opening_the_Web_Console

60 9 Consoles: interactive JavaScript command lines

Figure 9.1: The console of the web browser “Google Chrome” is open (in the bottom half
of window) while visiting a web page.

9.2 The console.* API: printing data and more 61

9.1.2 The Node.js REPL
REPL stands for read-eval-print loop and basically means command line. To use it, you must
first start Node.js from an operating system command line, via the command node. Then
an interaction with it looks as depicted in fig. 9.2: The text after > is input from the user;
everything else is output from Node.js.

Figure 9.2: Starting and using the Node.js REPL (interactive command line).

Reading: REPL interactions
I occasionally demonstrate JavaScript via REPL interactions. Then I also use greater-
than symbols (>) to mark input – for example:

> 3 + 5
8

9.1.3 Other options
Other options include:

• There are manyweb apps that let you experiment with JavaScript in web browsers
– for example, Babel’s REPL.

• There are also native apps and IDE plugins for running JavaScript.

Consoles often run in non-strict mode
In modern JavaScript, most code (e.g., modules) is executed in strict mode. How-
ever, consoles often run in non-strict mode. Therefore, you may occasionally get
slightly different results when using a console to execute code from this book.

9.2 The console.* API: printing data and more
In browsers, the console is something you can bring up that is normally hidden. For
Node.js, the console is the terminal that Node.js is currently running in.

https://babeljs.io/repl

62 9 Consoles: interactive JavaScript command lines

The full console.*API is documented onMDNweb docs and on the Node.js website. It
is not part of the JavaScript language standard, but much functionality is supported by
both browsers and Node.js.
In this chapter, we only look at the following two methods for printing data (“printing”
means displaying in the console):

• console.log()
• console.error()

9.2.1 Printing values: console.log() (stdout)
There are two variants of this operation:

console.log(...values: any[]): void
console.log(pattern: string, ...values: any[]): void

9.2.1.1 Printing multiple values
The first variant prints (text representations of) values on the console:

console.log('abc', 123, true);
// Output:
// abc 123 true

At the end, console.log() always prints a newline. Therefore, if you call it with zero
arguments, it just prints a newline.

9.2.1.2 Printing a string with substitutions
The second variant performs string substitution:

console.log('Test: %s %j', 123, 'abc');
// Output:
// Test: 123 "abc"

These are some of the directives you can use for substitutions:
• %s converts the corresponding value to a string and inserts it.

console.log('%s %s', 'abc', 123);
// Output:
// abc 123

• %o inserts a string representation of an object.
console.log('%o', {foo: 123, bar: 'abc'});
// Output:
// { foo: 123, bar: 'abc' }

• %j converts a value to a JSON string and inserts it.
console.log('%j', {foo: 123, bar: 'abc'});
// Output:
// {"foo":123,"bar":"abc"}

https://developer.mozilla.org/en-US/docs/Web/API/console
https://nodejs.org/api/console.html

9.2 The console.* API: printing data and more 63

• %% inserts a single %.
console.log('%s%%', 99);
// Output:
// 99%

9.2.2 Printing error information: console.error() (stderr)
console.error()works the same as console.log(), but what it logs is considered error
information. For Node.js, that means that the output goes to stderr instead of stdout on
Unix.

9.2.3 Printing nested objects via JSON.stringify()
JSON.stringify() is occasionally useful for printing nested objects:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

Output:
{

"first": "Jane",
"last": "Doe"

}

64 9 Consoles: interactive JavaScript command lines

Chapter 10

Assertion API

Contents
10.1 Assertions in software development 65
10.2 How assertions are used in this book 65

10.2.1 Documenting results in code examples via assertions 66
10.2.2 Implementing test-driven exercises via assertions 66

10.3 Normal comparison vs. deep comparison 66
10.4 Quick reference: module assert . 67

10.4.1 Normal equality . 67
10.4.2 Deep equality . 67
10.4.3 Expecting exceptions . 67
10.4.4 Another tool function . 68

10.1 Assertions in software development
In software development, assertions state facts about values or pieces of code that must
be true. If they aren’t, an exception is thrown. Node.js supports assertions via its built-in
module assert – for example:

import {strict as assert} from 'assert';
assert.equal(3 + 5, 8);

This assertion states that the expected result of 3 plus 5 is 8. The import statement uses
the recommended strict version of assert.

10.2 How assertions are used in this book
In this book, assertions are used in two ways: to document results in code examples and
to implement test-driven exercises.

65

https://nodejs.org/api/assert.html#assert_strict_mode

66 10 Assertion API

10.2.1 Documenting results in code examples via assertions
In code examples, assertions express expected results. Take, for example, the following
function:

function id(x) {
return x;

}

id() returns its parameter. We can show it in action via an assertion:
assert.equal(id('abc'), 'abc');

In the examples, I usually omit the statement for importing assert.
The motivation behind using assertions is:

• You can specify precisely what is expected.
• Code examples can be tested automatically, which ensures that they really work.

10.2.2 Implementing test-driven exercises via assertions
The exercises for this book are test-driven, via the test framework AVA. Checks inside the
tests are made via methods of assert.
The following is an example of such a test:

// For the exercise, you must implement the function hello().
// The test checks if you have done it properly.
test('First exercise', t => {

assert.equal(hello('world'), 'Hello world!');
assert.equal(hello('Jane'), 'Hello Jane!');
assert.equal(hello('John'), 'Hello John!');
assert.equal(hello(''), 'Hello !');

});

For more information, consult §11 “Getting started with quizzes and exercises”.

10.3 Normal comparison vs. deep comparison
The strict equal() uses === to compare values. Therefore, an object is only equal to itself
– even if another object has the same content (because === does not compare the contents
of objects, only their identities):

assert.notEqual({foo: 1}, {foo: 1});

deepEqual() is a better choice for comparing objects:
assert.deepEqual({foo: 1}, {foo: 1});

This method works for Arrays, too:
assert.notEqual(['a', 'b', 'c'], ['a', 'b', 'c']);
assert.deepEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

10.4 Quick reference: module assert 67

10.4 Quick reference: module assert
For the full documentation, see the Node.js docs.

10.4.1 Normal equality
• function equal(actual: any, expected: any, message?: string): void

actual === expectedmust be true. If not, an AssertionError is thrown.
assert.equal(3+3, 6);

• function notEqual(actual: any, expected: any, message?: string): void

actual !== expectedmust be true. If not, an AssertionError is thrown.
assert.notEqual(3+3, 22);

The optional last parameter message can be used to explain what is asserted. If the asser-
tion fails, the message is used to set up the AssertionError that is thrown.

let e;
try {

const x = 3;
assert.equal(x, 8, 'x must be equal to 8')

} catch (err) {
assert.equal(

String(err),
'AssertionError [ERR_ASSERTION]: x must be equal to 8');

}

10.4.2 Deep equality
• function deepEqual(actual: any, expected: any, message?: string): void

actualmust be deeply equal to expected. If not, an AssertionError is thrown.
assert.deepEqual([1,2,3], [1,2,3]);
assert.deepEqual([], []);

// To .equal(), an object is only equal to itself:
assert.notEqual([], []);

• function notDeepEqual(actual: any, expected: any, message?: string):
void

actualmust not be deeply equal to expected. If it is, an AssertionError is thrown.
assert.notDeepEqual([1,2,3], [1,2]);

10.4.3 Expecting exceptions
If you want to (or expect to) receive an exception, you need throws(): This function
calls its first parameter, the function block, and only succeeds if it throws an exception.
Additional parameters can be used to specify what that exception must look like.

https://nodejs.org/api/assert.html

68 10 Assertion API

• function throws(block: Function, message?: string): void

assert.throws(
() => {

null.prop;
}

);

• function throws(block: Function, error: Function, message?: string):
void

assert.throws(
() => {

null.prop;
},
TypeError

);

• function throws(block: Function, error: RegExp, message?: string): void

assert.throws(
() => {

null.prop;
},
/^TypeError: Cannot read property 'prop' of null$/

);

• function throws(block: Function, error: Object, message?: string): void

assert.throws(
() => {

null.prop;
},
{

name: 'TypeError',
message: `Cannot read property 'prop' of null`,

}
);

10.4.4 Another tool function
• function fail(message: string | Error): never

Always throws an AssertionError when it is called. That is occasionally useful
for unit testing.

try {
functionThatShouldThrow();
assert.fail();

} catch (_) {
// Success

}

10.4 Quick reference: module assert 69

Quiz
See quiz app.

70 10 Assertion API

Chapter 11

Getting started with quizzes and
exercises

Contents
11.1 Quizzes . 71
11.2 Exercises . 71

11.2.1 Installing the exercises . 71
11.2.2 Running exercises . 72

11.3 Unit tests in JavaScript . 72
11.3.1 A typical test . 72
11.3.2 Asynchronous tests in AVA . 73

Throughoutmost chapters, there are quizzes and exercises. These are a paid feature, but a
comprehensive preview is available. This chapter explains how to get started with them.

11.1 Quizzes
Installation:

• Download and unzip impatient-js-quiz.zip

Running the quiz app:
• Open impatient-js-quiz/index.html in a web browser
• You’ll see a TOC of all the quizzes.

11.2 Exercises
11.2.1 Installing the exercises
To install the exercises:

71

72 11 Getting started with quizzes and exercises

• Download and unzip impatient-js-code.zip
• Follow the instructions in README.txt

11.2.2 Running exercises
• Exercises are referred to by path in this book.

– For example: exercises/quizzes-exercises/first_module_test.mjs
• Within each file:

– The first line contains the command for running the exercise.
– The following lines describe what you have to do.

11.3 Unit tests in JavaScript
All exercises in this book are tests that are run via the test framework AVA. This section
gives a brief introduction.

11.3.1 A typical test
Typical test code is split into two parts:

• Part 1: the code to be tested.
• Part 2: the tests for the code.

Take, for example, the following two files:
• id.mjs (code to be tested)
• id_test.mjs (tests)

11.3.1.1 Part 1: the code
The code itself resides in id.mjs:

export function id(x) {
return x;

}

The key thing here is: everything you want to test must be exported. Otherwise, the test
code can’t access it.

11.3.1.2 Part 2: the tests

Don’t worry about the exact details of tests
You don’t need to worry about the exact details of tests: They are always imple-
mented for you. Therefore, you only need to read them, but not write them.

The tests for the code reside in id_test.mjs:
// npm t demos/quizzes-exercises/id_test.mjs

import test from 'ava'; // (A)

https://github.com/avajs/ava

11.3 Unit tests in JavaScript 73

import {strict as assert} from 'assert'; // (B)
import {id} from './id.mjs'; // (C)

test('My test', t => { // (D)
assert.equal(id('abc'), 'abc'); // (E)

});

The core of this test file is line E – an assertion: assert.equal() specifies that the expected
result of id('abc') is 'abc'.
As for the other lines:

• The comment at the very beginning shows the shell command for running the test.
• Line A: We import the test framework.
• Line B: We import the assertion library. AVA has built-in assertions, but module

assert lets us remain compatible with plain Node.js.
• Line C: We import the function to test.
• Line D: We define a test. This is done by calling the function test():

– First parameter: the name of the test.
– Second parameter: the test code, which is provided via an arrow function.
The parameter t gives us access to AVA’s testing API (assertions, etc.).

To run the test, we execute the following in a command line:
npm t demos/quizzes-exercises/id_test.mjs

The t is an abbreviation for test. That is, the long version of this command is:
npm test demos/quizzes-exercises/id_test.mjs

Exercise: Your first exercise
The following exercise gives you a first taste of what exercises are like:

• exercises/quizzes-exercises/first_module_test.mjs

11.3.2 Asynchronous tests in AVA

Reading
You can postpone reading this section until you get to the chapters on asynchronous
programming.

Writing tests for asynchronous code requires extra work: The test receives its results later
and has to signal to AVA that it isn’t finished yet when it returns. The following subsec-
tions examine three ways of doing so.

11.3.2.1 Asynchronicity via callbacks
If we call test.cb() instead of test(), AVA switches to callback-based asynchronicity.
When we are done with our asynchronous work, we have to call t.end():

74 11 Getting started with quizzes and exercises

test.cb('divideCallback', t => {
divideCallback(8, 4, (error, result) => {

if (error) {
t.end(error);

} else {
assert.strictEqual(result, 2);
t.end();

}
});

});

11.3.2.2 Asynchronicity via Promises
If a test returns a Promise, AVA switches to Promise-based asynchronicity. A test is con-
sidered successful if the Promise is fulfilled and failed if the Promise is rejected.

test('dividePromise 1', t => {
return dividePromise(8, 4)
.then(result => {

assert.strictEqual(result, 2);
});

});

11.3.2.3 Async functions as test “bodies”
Async functions always return Promises. Therefore, an async function is a convenient
way of implementing an asynchronous test. The following code is equivalent to the pre-
vious example.

test('dividePromise 2', async t => {
const result = await dividePromise(8, 4);
assert.strictEqual(result, 2);
// No explicit return necessary!

});

You don’t need to explicitly return anything: The implicitly returned undefined is used
to fulfill the Promise returned by this async function. And if the test code throws an
exception, then the async function takes care of rejecting the returned Promise.

Part III

Variables and values

75

Chapter 12

Variables and assignment

Contents
12.1 let . 78
12.2 const . 78

12.2.1 const and immutability . 78
12.2.2 const and loops . 79

12.3 Deciding between const and let . 79
12.4 The scope of a variable . 79

12.4.1 Shadowing variables . 80
12.5 (Advanced) . 81
12.6 Terminology: static vs. dynamic . 81

12.6.1 Static phenomenon: scopes of variables 81
12.6.2 Dynamic phenomenon: function calls 81

12.7 Global variables and the global object 82
12.7.1 globalThis . 82

12.8 Declarations: scope and activation 84
12.8.1 const and let: temporal dead zone 84
12.8.2 Function declarations and early activation 86
12.8.3 Class declarations are not activated early 87
12.8.4 var: hoisting (partial early activation) 87

12.9 Closures . 88
12.9.1 Bound variables vs. free variables 88
12.9.2 What is a closure? . 88
12.9.3 Example: A factory for incrementors 89
12.9.4 Use cases for closures . 90

12.10Further reading . 90

These are JavaScript’s main ways of declaring variables:
• let declares mutable variables.
• const declares constants (immutable variables).

77

78 12 Variables and assignment

Before ES6, there was also var. But it has several quirks, so it’s best to avoid it in modern
JavaScript. You can read more about it in Speaking JavaScript.

12.1 let

Variables declared via let are mutable:
let i;
i = 0;
i = i + 1;
assert.equal(i, 1);

You can also declare and assign at the same time:
let i = 0;

12.2 const

Variables declared via const are immutable. You must always initialize immediately:
const i = 0; // must initialize

assert.throws(
() => { i = i + 1 },
{

name: 'TypeError',
message: 'Assignment to constant variable.',

}
);

12.2.1 const and immutability
In JavaScript, const only means that the binding (the association between variable name
and variable value) is immutable. The value itself may be mutable, like obj in the follow-
ing example.

const obj = { prop: 0 };

// Allowed: changing properties of `obj`
obj.prop = obj.prop + 1;
assert.equal(obj.prop, 1);

// Not allowed: assigning to `obj`
assert.throws(

() => { obj = {} },
{

name: 'TypeError',
message: 'Assignment to constant variable.',

}
);

http://speakingjs.com/es5/ch16.html

12.3 Deciding between const and let 79

12.2.2 const and loops
You can use constwith for-of loops, where a fresh binding is created for each iteration:

const arr = ['hello', 'world'];
for (const elem of arr) {

console.log(elem);
}
// Output:
// 'hello'
// 'world'

In plain for loops, you must use let, however:
const arr = ['hello', 'world'];
for (let i=0; i<arr.length; i++) {

const elem = arr[i];
console.log(elem);

}

12.3 Deciding between const and let

I recommend the following rules to decide between const and let:
• const indicates an immutable binding and that a variable never changes its value.
Prefer it.

• let indicates that the value of a variable changes. Use it only when you can’t use
const.

Exercise: const
exercises/variables-assignment/const_exrc.mjs

12.4 The scope of a variable
The scope of a variable is the region of a program where it can be accessed. Consider the
following code.

{ // // Scope A. Accessible: x
const x = 0;
assert.equal(x, 0);
{ // Scope B. Accessible: x, y

const y = 1;
assert.equal(x, 0);
assert.equal(y, 1);
{ // Scope C. Accessible: x, y, z

const z = 2;
assert.equal(x, 0);
assert.equal(y, 1);

80 12 Variables and assignment

assert.equal(z, 2);
}

}
}
// Outside. Not accessible: x, y, z
assert.throws(

() => console.log(x),
{

name: 'ReferenceError',
message: 'x is not defined',

}
);

• Scope A is the (direct) scope of x.
• Scopes B and C are inner scopes of scope A.
• Scope A is an outer scope of scope B and scope C.

Each variable is accessible in its direct scope and all scopes nested within that scope.

The variables declared via const and let are called block-scoped because their scopes are
always the innermost surrounding blocks.

12.4.1 Shadowing variables
You can’t declare the same variable twice at the same level:

assert.throws(
() => {

eval('let x = 1; let x = 2;');
},
{

name: 'SyntaxError',
message: "Identifier 'x' has already been declared",

});

Why eval()?
eval() delays parsing (and therefore the SyntaxError), until the callback of as-
sert.throws() is executed. If we didn’t use it, we’d already get an error when this
code is parsed and assert.throws() wouldn’t even be executed.

You can, however, nest a block and use the same variable name x that you used outside
the block:

const x = 1;
assert.equal(x, 1);
{

const x = 2;
assert.equal(x, 2);

12.5 (Advanced) 81

}
assert.equal(x, 1);

Inside the block, the inner x is the only accessible variable with that name. The inner x is
said to shadow the outer x. Once you leave the block, you can access the old value again.

Quiz: basic
See quiz app.

12.5 (Advanced)
All remaining sections are advanced.

12.6 Terminology: static vs. dynamic
These two adjectives describe phenomena in programming languages:

• Staticmeans that something is related to source code and can be determined with-
out executing code.

• Dynamicmeans at runtime.

Let’s look at examples for these two terms.

12.6.1 Static phenomenon: scopes of variables
Variable scopes are a static phenomenon. Consider the following code:

function f() {
const x = 3;
// ···

}

x is statically (or lexically) scoped. That is, its scope is fixed and doesn’t change at runtime.

Variable scopes form a static tree (via static nesting).

12.6.2 Dynamic phenomenon: function calls
Function calls are a dynamic phenomenon. Consider the following code:

function g(x) {}
function h(y) {

if (Math.random()) g(y); // (A)
}

Whether or not the function call in line A happens, can only be decided at runtime.

Function calls form a dynamic tree (via dynamic calls).

82 12 Variables and assignment

12.7 Global variables and the global object
JavaScript’s variable scopes are nested. They form a tree:

• The outermost scope is the root of the tree.
• The scopes directly contained in that scope are the children of the root.
• And so on.

The root is also called the global scope. In web browsers, the only location where one is
directly in that scope is at the top level of a script. The variables of the global scope are
called global variables and accessible everywhere. There are two kinds of global variables:

• Global declarative variables are normal variables.
– They can only be created while at the top level of a script, via const, ‘let, and
class declarations.

• Global object variables are stored in properties of the so-called global object.
– They are created in the top level of a script, via var and function declarations.
– The global object can be accessed via the global variable globalThis. It can
be used to create, read, and delete global object variables.

– Other than that, global object variables work like normal variables.

The following HTML fragment demonstrates globalThis and the two kinds of global
variables.

<script>
const declarativeVariable = 'd';
var objectVariable = 'o';

</script>
<script>

// All scripts share the same top-level scope:
console.log(declarativeVariable); // 'd'
console.log(objectVariable); // 'o'

// Not all declarations create properties of the global object:
console.log(globalThis.declarativeVariable); // undefined
console.log(globalThis.objectVariable); // 'o'

</script>

Each ECMAScript module has its own scope. Therefore, variables that exist at the top
level of a module are not global. Fig. 12.1 illustrates how the various scopes are related.

12.7.1 globalThis

globalThis is new
globalThis is a new feature. Be sure that the JavaScript engines you are targeting
support it. If they don’t, switch to one of the alternatives mentioned below.

The global variable globalThis is the new standard way of accessing the global object. It
got its name from the fact that it has the same value as this in global scope.

12.7 Global variables and the global object 83

Object variables

Global scope

Module scope 1 ···

Declarative variables

Top level of scripts:

var, function declarations

const, let, class declarations

Module scope 2

Figure 12.1: The global scope is JavaScript’s outermost scope. It has two kinds of vari-
ables: object variables (managed via the global object) and normal declarative variables. Each
ECMAScript module has its own scope which is contained in the global scope.

globalThis does not always directly point to the global object
For example, in browsers, there is an indirection. That indirection is normally not
noticable, but it is there and can be observed.

12.7.1.1 Alternatives to globalThis

Older ways of accessing the global object depend on the platform:

• Global variable window: is the classic way of referring to the global object. But it
doesn’t work in Node.js and in Web Workers.

• Global variable self: is available in Web Workers and browsers in general. But it
isn’t supported by Node.js.

• Global variable global: is only available in Node.js.

12.7.1.2 Use cases for globalThis

The global object is now considered a mistake that JavaScript can’t get rid of, due to
backward compatibility. It affects performance negatively and is generally confusing.

ECMAScript 6 introduced several features that make it easier to avoid the global object –
for example:

• const, let, and class declarations don’t create global object properties when used
in global scope.

• Each ECMAScript module has its own local scope.

It is usually better to access global object variables via variables and not via properties of
globalThis. The former has always worked the same on all JavaScript platforms.

https://2ality.com/2019/08/global-this.html#window-proxy

84 12 Variables and assignment

Tutorials on the web occasionally access global variables globVar via window.globVar.
But the prefix “window.” is not necessary and I recommend to omit it:

window.encodeURIComponent(str); // no
encodeURIComponent(str); // yes

Therefore, there are relatively few use cases for globalThis – for example:
• Polyfills that add new features to old JavaScript engines.
• Feature detection, to find out what features a JavaScript engine supports.

12.8 Declarations: scope and activation
These are two key aspects of declarations:

• Scope: Where can a declared entity be seen? This is a static trait.
• Activation: When can I access an entity? This is a dynamic trait. Some entities
can be accessed as soon as we enter their scopes. For others, we have to wait until
execution reaches their declarations.

Tbl. 12.1 summarizes how various declarations handle these aspects.

Table 12.1: Aspects of declarations. “Duplicates” describes if a declara-
tion can be used twice with the same name (per scope). “Global prop.”
describes if a declaration adds a property to the global object, when it is
executed in the global scope of a script. TDZ means temporal dead zone
(which is explained later). (*) Function declarations are normally block-
scoped, but function-scoped in sloppy mode.

Scope Activation Duplicates Global prop.
const Block decl. (TDZ) ✘ ✘
let Block decl. (TDZ) ✘ ✘
function Block (*) start ✔ ✔
class Block decl. (TDZ) ✘ ✘
import Module same as export ✘ ✘
var Function start, partially ✔ ✔

import is described in §27.5 “ECMAScriptmodules”. The following sections describe the
other constructs in more detail.

12.8.1 const and let: temporal dead zone
For JavaScript, TC39 needed to decide what happens if you access a constant in its direct
scope, before its declaration:

{
console.log(x); // What happens here?
const x;

}

12.8 Declarations: scope and activation 85

Some possible approaches are:

1. The name is resolved in the scope surrounding the current scope.
2. You get undefined.
3. There is an error.

Approach 1 was rejected because there is no precedent in the language for this approach.
It would therefore not be intuitive to JavaScript programmers.

Approach 2 was rejected because then xwouldn’t be a constant – it would have different
values before and after its declaration.

let uses the same approach 3 as const, so that both work similarly and it’s easy to switch
between them.

The time between entering the scope of a variable and executing its declaration is called
the temporal dead zone (TDZ) of that variable:

• During this time, the variable is considered to be uninitialized (as if that were a
special value it has).

• If you access an uninitialized variable, you get a ReferenceError.
• Once you reach a variable declaration, the variable is set to either the value of the
initializer (specified via the assignment symbol) or undefined – if there is no ini-
tializer.

The following code illustrates the temporal dead zone:

if (true) { // entering scope of `tmp`, TDZ starts
// `tmp` is uninitialized:
assert.throws(() => (tmp = 'abc'), ReferenceError);
assert.throws(() => console.log(tmp), ReferenceError);

let tmp; // TDZ ends
assert.equal(tmp, undefined);

}

The next example shows that the temporal dead zone is truly temporal (related to time):

if (true) { // entering scope of `myVar`, TDZ starts
const func = () => {

console.log(myVar); // executed later
};

// We are within the TDZ:
// Accessing `myVar` causes `ReferenceError`

let myVar = 3; // TDZ ends
func(); // OK, called outside TDZ

}

Even though func() is located before the declaration of myVar and uses that variable, we
can call func(). But we have to wait until the temporal dead zone of myVar is over.

86 12 Variables and assignment

12.8.2 Function declarations and early activation

More information on functions
In this section, we are using functions – before we had a chance to learn them prop-
erly. Hopefully, everything still makes sense. Whenever it doesn’t, please see §25
“Callable values”.

A function declaration is always executed when entering its scope, regardless of where it
is locatedwithin that scope. That enables you to call a function foo() before it is declared:

assert.equal(foo(), 123); // OK
function foo() { return 123; }

The early activation of foo()means that the previous code is equivalent to:
function foo() { return 123; }
assert.equal(foo(), 123);

If you declare a function via const or let, then it is not activated early. In the following
example, you can only use bar() after its declaration.

assert.throws(
() => bar(), // before declaration
ReferenceError);

const bar = () => { return 123; };

assert.equal(bar(), 123); // after declaration

12.8.2.1 Calling ahead without early activation
Even if a function g() is not activated early, it can be called by a preceding function f()
(in the same scope) if we adhere to the following rule: f() must be invoked after the
declaration of g().

const f = () => g();
const g = () => 123;

// We call f() after g() was declared:
assert.equal(f(), 123);

The functions of amodule are usually invoked after its complete body is executed. There-
fore, in modules, you rarely need to worry about the order of functions.
Lastly, note how early activation automatically keeps the aforementioned rule: when
entering a scope, all function declarations are executed first, before any calls are made.

12.8.2.2 A pitfall of early activation
If you rely on early activation to call a function before its declaration, then you need to
be careful that it doesn’t access data that isn’t activated early.

12.8 Declarations: scope and activation 87

funcDecl();

const MY_STR = 'abc';
function funcDecl() {

assert.throws(
() => MY_STR,
ReferenceError);

}

The problem goes away if you make the call to funcDecl() after the declaration of MY_-
STR.

12.8.2.3 The pros and cons of early activation
We have seen that early activation has a pitfall and that you can get most of its benefits
without using it. Therefore, it is better to avoid early activation. But I don’t feel strongly
about this and, as mentioned before, often use function declarations because I like their
syntax.

12.8.3 Class declarations are not activated early
Even though they are similar to function declarations in some ways, class declarations
are not activated early:

assert.throws(
() => new MyClass(),
ReferenceError);

class MyClass {}

assert.equal(new MyClass() instanceof MyClass, true);

Why is that? Consider the following class declaration:
class MyClass extends Object {}

The operand of extends is an expression. Therefore, you can do things like this:
const identity = x => x;
class MyClass extends identity(Object) {}

Evaluating such an expression must be done at the location where it is mentioned. Any-
thing else would be confusing. That explains why class declarations are not activated
early.

12.8.4 var: hoisting (partial early activation)
var is an older way of declaring variables that predates const and let (which are pre-
ferred now). Consider the following var declaration.

var x = 123;

This declaration has two parts:

88 12 Variables and assignment

• Declaration var x: The scope of a var-declared variable is the innermost surround-
ing function and not the innermost surrounding block, as for most other declara-
tions. Such a variable is already active at the beginning of its scope and initialized
with undefined.

• Assignment x = 123: The assignment is always executed in place.
The following code demonstrates the effects of var:

function f() {
// Partial early activation:
assert.equal(x, undefined);
if (true) {

var x = 123;
// The assignment is executed in place:
assert.equal(x, 123);

}
// Scope is function, not block:
assert.equal(x, 123);

}

12.9 Closures
Before we can explore closures, we need to learn about bound variables and free vari-
ables.

12.9.1 Bound variables vs. free variables
Per scope, there is a set of variables that are mentioned. Among these variables we dis-
tinguish:

• Bound variables are declared within the scope. They are parameters and local vari-
ables.

• Free variables are declared externally. They are also called non-local variables.
Consider the following code:

function func(x) {
const y = 123;
console.log(z);

}

In the body of func(), x and y are bound variables. z is a free variable.

12.9.2 What is a closure?
What is a closure then?

A closure is a function plus a connection to the variables that exist at its “birth
place”.

What is the point of keeping this connection? It provides the values for the free variables
of the function – for example:

12.9 Closures 89

function funcFactory(value) {
return () => {

return value;
};

}

const func = funcFactory('abc');
assert.equal(func(), 'abc'); // (A)

funcFactory returns a closure that is assigned to func. Because func has the connection
to the variables at its birth place, it can still access the free variable valuewhen it is called
in line A (even though it “escaped” its scope).

All functions in JavaScript are closures
Static scoping is supported via closures in JavaScript. Therefore, every function is
a closure.

12.9.3 Example: A factory for incrementors
The following function returns incrementors (a name that I just made up). An incrementor
is a function that internally stores a number. When it is called, it updates that number by
adding the argument to it and returns the new value.

function createInc(startValue) {
return (step) => { // (A)

startValue += step;
return startValue;

};
}
const inc = createInc(5);
assert.equal(inc(2), 7);

We can see that the function created in lineA keeps its internal number in the free variable
startValue. This time, we don’t just read from the birth scope, we use it to store data
that we change and that persists across function calls.
We can create more storage slots in the birth scope, via local variables:

function createInc(startValue) {
let index = -1;
return (step) => {

startValue += step;
index++;
return [index, startValue];

};
}
const inc = createInc(5);
assert.deepEqual(inc(2), [0, 7]);
assert.deepEqual(inc(2), [1, 9]);

90 12 Variables and assignment

assert.deepEqual(inc(2), [2, 11]);

12.9.4 Use cases for closures
What are closures good for?

• For starters, they are simply an implementation of static scoping. As such, they
provide context data for callbacks.

• They can also be used by functions to store state that persists across function calls.
createInc() is an example of that.

• And they can provide private data for objects (produced via literals or classes). The
details of how that works are explained in Exploring ES6.

Quiz: advanced
See quiz app.

12.10 Further reading
For more information on how variables are handled under the hood (as described in the
ECMAScript specification), consult §26.4 “Closures and environments”.

https://exploringjs.com/es6/ch_classes.html#_private-data-via-constructor-environments

Chapter 13

Values

Contents
13.1 What’s a type? . 91
13.2 JavaScript’s type hierarchy . 92
13.3 The types of the language specification 92
13.4 Primitive values vs. objects . 93

13.4.1 Primitive values (short: primitives) 93
13.4.2 Objects . 94

13.5 The operators typeof and instanceof: what’s the type of a value? . 95
13.5.1 typeof . 96
13.5.2 instanceof . 96

13.6 Classes and constructor functions . 97
13.6.1 Constructor functions associated with primitive types 97

13.7 Converting between types . 98
13.7.1 Explicit conversion between types 98
13.7.2 Coercion (automatic conversion between types) 99

In this chapter, we’ll examine what kinds of values JavaScript has.

Supporting tool: ===
In this chapter, we’ll occasionally use the strict equality operator. a === b evaluates
to true if a and b are equal. What exactly that means is explained in §14.4.2 “Strict
equality (=== and !==)”.

13.1 What’s a type?
For this chapter, I consider types to be sets of values – for example, the type boolean is
the set { false, true }.

91

92 13 Values

13.2 JavaScript’s type hierarchy

(any)

(object)(primitive value)

boolean

number

string

symbol

undefined

null

Object

Array

Map

Set

Function

RegExp

Date

Figure 13.1: A partial hierarchy of JavaScript’s types. Missing are the classes for errors,
the classes associated with primitive types, and more. The diagram hints at the fact that
not all objects are instances of Object.

Fig. 13.1 shows JavaScript’s type hierarchy. What do we learn from that diagram?

• JavaScript distinguishes two kinds of values: primitive values and objects. We’ll
see soon what the difference is.

• The diagram differentiates objects and instances of class Object. Each instance
of Object is also an object, but not vice versa. However, virtually all objects that
you’ll encounter in practice are instances of Object – for example, objects created
via object literals. More details on this topic are explained in §29.4.3.4 “Objects that
aren’t instances of Object”.

13.3 The types of the language specification
The ECMAScript specification only knows a total of seven types. The names of those
types are (I’m using TypeScript’s names, not the spec’s names):

• undefined with the only element undefined
• null with the only element null
• boolean with the elements false and true
• number the type of all numbers (e.g., -123, 3.141)
• string the type of all strings (e.g., 'abc')
• symbol the type of all symbols (e.g., Symbol('My Symbol'))
• object the type of all objects (different from Object, the type of all instances of
class Object and its subclasses)

13.4 Primitive values vs. objects 93

13.4 Primitive values vs. objects
The specification makes an important distinction between values:

• Primitive values are the elements of the types undefined, null, boolean, number,
string, symbol.

• All other values are objects.

In contrast to Java (that inspired JavaScript here), primitive values are not second-class
citizens. The difference between them and objects is more subtle. In a nutshell:

• Primitive values: are atomic building blocks of data in JavaScript.
– They are passed by value: when primitive values are assigned to variables or
passed to functions, their contents are copied.

– They are compared by value: when comparing two primitive values, their con-
tents are compared.

• Objects: are compound pieces of data.
– They are passed by identity (my term): when objects are assigned to variables
or passed to functions, their identities (think pointers) are copied.

– They are compared by identity (my term): when comparing two objects, their
identities are compared.

Other than that, primitive values and objects are quite similar: they both have properties
(key-value entries) and can be used in the same locations.

Next, we’ll look at primitive values and objects in more depth.

13.4.1 Primitive values (short: primitives)
13.4.1.1 Primitives are immutable

You can’t change, add, or remove properties of primitives:

let str = 'abc';
assert.equal(str.length, 3);
assert.throws(

() => { str.length = 1 },
/^TypeError: Cannot assign to read only property 'length'/

);

13.4.1.2 Primitives are passed by value

Primitives are passed by value: variables (including parameters) store the contents of the
primitives. When assigning a primitive value to a variable or passing it as an argument
to a function, its content is copied.

let x = 123;
let y = x;
assert.equal(y, 123);

94 13 Values

13.4.1.3 Primitives are compared by value

Primitives are compared by value: when comparing twoprimitive values, we compare their
contents.

assert.equal(123 === 123, true);
assert.equal('abc' === 'abc', true);

To see what’s so special about this way of comparing, read on and find out how objects
are compared.

13.4.2 Objects
Objects are covered in detail in §28 “Single objects” and the following chapter. Here, we
mainly focus on how they differ from primitive values.
Let’s first explore two common ways of creating objects:

• Object literal:
const obj = {

first: 'Jane',
last: 'Doe',

};

The object literal starts and ends with curly braces {}. It creates an object with
two properties. The first property has the key 'first' (a string) and the value
'Jane'. The second property has the key 'last' and the value 'Doe'. For more
information on object literals, consult §28.2.1 “Object literals: properties”.

• Array literal:
const arr = ['foo', 'bar'];

The Array literal starts and ends with square brackets []. It creates an Array with
two elements: 'foo' and 'bar'. For more information on Array literals, consult
§31.2.1 “Creating, reading, writing Arrays”.

13.4.2.1 Objects are mutable by default
By default, you can freely change, add, and remove the properties of objects:

const obj = {};

obj.foo = 'abc'; // add a property
assert.equal(obj.foo, 'abc');

obj.foo = 'def'; // change a property
assert.equal(obj.foo, 'def');

13.4.2.2 Objects are passed by identity

Objects are passed by identity (my term): variables (including parameters) store the identi-
ties of objects.

13.5 The operators typeof and instanceof: what’s the type of a value? 95

The identity of an object is like a pointer (or a transparent reference) to the object’s actual
data on the heap (think shared main memory of a JavaScript engine).

When assigning an object to a variable or passing it as an argument to a function, its
identity is copied. Each object literal creates a fresh object on the heap and returns its
identity.

const a = {}; // fresh empty object
// Pass the identity in `a` to `b`:
const b = a;

// Now `a` and `b` point to the same object
// (they “share” that object):
assert.equal(a === b, true);

// Changing `a` also changes `b`:
a.foo = 123;
assert.equal(b.foo, 123);

JavaScript uses garbage collection to automatically manage memory:

let obj = { prop: 'value' };
obj = {};

Now the old value { prop: 'value' } of obj is garbage (not used anymore). JavaScript
will automatically garbage-collect it (remove it from memory), at some point in time (pos-
sibly never if there is enough free memory).

Details: passing by identity
“Passing by identity” means that the identity of an object (a transparent reference)
is passed by value. This approach is also called “passing by sharing”.

13.4.2.3 Objects are compared by identity

Objects are compared by identity (my term): two variables are only equal if they contain the
same object identity. They are not equal if they refer to different objects with the same
content.

const obj = {}; // fresh empty object
assert.equal(obj === obj, true); // same identity
assert.equal({} === {}, false); // different identities, same content

13.5 The operators typeof and instanceof: what’s the type
of a value?

The two operators typeof and instanceof let you determine what type a given value x
has:

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_sharing

96 13 Values

if (typeof x === 'string') ···
if (x instanceof Array) ···

How do they differ?
• typeof distinguishes the 7 types of the specification (minus one omission, plus one
addition).

• instanceof tests which class created a given value.

Rule of thumb: typeof is for primitive values; instanceof is for objects

13.5.1 typeof

Table 13.1: The results of the typeof operator.

x typeof x

undefined 'undefined'
null 'object'
Boolean 'boolean'
Number 'number'
String 'string'
Symbol 'symbol'
Function 'function'
All other objects 'object'

Tbl. 13.1 lists all results of typeof. They roughly correspond to the 7 types of the language
specification. Alas, there are two differences, and they are language quirks:

• typeof null returns 'object' and not 'null'. That’s a bug. Unfortunately, it
can’t be fixed. TC39 tried to do that, but it broke too much code on the web.

• typeof of a function should be 'object' (functions are objects). Introducing a
separate category for functions is confusing.

Exercises: Two exercises on typeof

• exercises/values/typeof_exrc.mjs

• Bonus: exercises/values/is_object_test.mjs

13.5.2 instanceof

This operator answers the question: has a value x been created by a class C?

x instanceof C

For example:

13.6 Classes and constructor functions 97

> (function() {}) instanceof Function
true
> ({}) instanceof Object
true
> [] instanceof Array
true

Primitive values are not instances of anything:

> 123 instanceof Number
false
> '' instanceof String
false
> '' instanceof Object
false

Exercise: instanceof
exercises/values/instanceof_exrc.mjs

13.6 Classes and constructor functions
JavaScript’s original factories for objects are constructor functions: ordinary functions that
return “instances” of themselves if you invoke them via the new operator.

ES6 introduced classes, which are mainly better syntax for constructor functions.

In this book, I’m using the terms constructor function and class interchangeably.

Classes can be seen as partitioning the single type object of the specification into sub-
types – they give us more types than the limited 7 ones of the specification. Each class is
the type of the objects that were created by it.

13.6.1 Constructor functions associated with primitive types
Each primitive type (except for the spec-internal types for undefined and null) has an
associated constructor function (think class):

• The constructor function Boolean is associated with booleans.
• The constructor function Number is associated with numbers.
• The constructor function String is associated with strings.
• The constructor function Symbol is associated with symbols.

Each of these functions plays several roles – for example, Number:

• You can use it as a function and convert values to numbers:

assert.equal(Number('123'), 123);

• Number.prototype provides the properties for numbers – for example, method
.toString():

98 13 Values

assert.equal((123).toString, Number.prototype.toString);

• Number is a namespace/container object for tool functions for numbers – for exam-
ple:

assert.equal(Number.isInteger(123), true);

• Lastly, you can also use Number as a class and create number objects. These objects
are different from real numbers and should be avoided.

assert.notEqual(new Number(123), 123);
assert.equal(new Number(123).valueOf(), 123);

13.6.1.1 Wrapping primitive values
The constructor functions related to primitive types are also called wrapper types because
they provide the canonical way of converting primitive values to objects. In the process,
primitive values are “wrapped” in objects.

const prim = true;
assert.equal(typeof prim, 'boolean');
assert.equal(prim instanceof Boolean, false);

const wrapped = Object(prim);
assert.equal(typeof wrapped, 'object');
assert.equal(wrapped instanceof Boolean, true);

assert.equal(wrapped.valueOf(), prim); // unwrap

Wrapping rarelymatters in practice, but it is used internally in the language specification,
to give primitives properties.

13.7 Converting between types
There are two ways in which values are converted to other types in JavaScript:

• Explicit conversion: via functions such as String().
• Coercion (automatic conversion): happens when an operation receives operands/-
parameters that it can’t work with.

13.7.1 Explicit conversion between types
The function associated with a primitive type explicitly converts values to that type:

> Boolean(0)
false
> Number('123')
123
> String(123)
'123'

You can also use Object() to convert values to objects:

13.7 Converting between types 99

> typeof Object(123)
'object'

13.7.2 Coercion (automatic conversion between types)
Formany operations, JavaScript automatically converts the operands/parameters if their
types don’t fit. This kind of automatic conversion is called coercion.
For example, the multiplication operator coerces its operands to numbers:

> '7' * '3'
21

Many built-in functions coerce, too. For example, parseInt() coerces its parameter to
string (parsing stops at the first character that is not a digit):

> parseInt(123.45)
123

Exercise: Converting values to primitives
exercises/values/conversion_exrc.mjs

Quiz
See quiz app.

100 13 Values

Chapter 14

Operators

Contents
14.1 Making sense of operators . 101

14.1.1 Operators coerce their operands to appropriate types 102
14.1.2 Most operators only work with primitive values 102

14.2 The plus operator (+) . 102
14.3 Assignment operators . 103

14.3.1 The plain assignment operator 103
14.3.2 Compound assignment operators 103
14.3.3 A list of all compound assignment operators 103

14.4 Equality: == vs. === . 104
14.4.1 Loose equality (== and !=) . 104
14.4.2 Strict equality (=== and !==) 105
14.4.3 Recommendation: always use strict equality 105
14.4.4 Even stricter than ===: Object.is() 106

14.5 Ordering operators . 107
14.6 Various other operators . 107

14.6.1 Comma operator . 107
14.6.2 void operator . 107

14.1 Making sense of operators
JavaScript’s operators may seem quirky. With the following two rules, they are easier to
understand:

• Operators coerce their operands to appropriate types
• Most operators only work with primitive values

101

102 14 Operators

14.1.1 Operators coerce their operands to appropriate types
If an operator gets operands that don’t have the proper types, it rarely throws an excep-
tion. Instead, it coerces (automatically converts) the operands so that it can work with
them. Let’s look at two examples.
First, the multiplication operator can only work with numbers. Therefore, it converts
strings to numbers before computing its result.

> '7' * '3'
21

Second, the square brackets operator ([]) for accessing the properties of an object can
only handle strings and symbols. All other values are coerced to string:

const obj = {};
obj['true'] = 123;

// Coerce true to the string 'true'
assert.equal(obj[true], 123);

14.1.2 Most operators only work with primitive values
As mentioned before, most operators only work with primitive values. If an operand is
an object, it is usually coerced to a primitive value – for example:

> [1,2,3] + [4,5,6]
'1,2,34,5,6'

Why? The plus operator first coerces its operands to primitive values:
> String([1,2,3])
'1,2,3'
> String([4,5,6])
'4,5,6'

Next, it concatenates the two strings:
> '1,2,3' + '4,5,6'
'1,2,34,5,6'

14.2 The plus operator (+)
The plus operator works as follows in JavaScript:

• First, it converts both operands to primitive values. Then it switches to one of two
modes:

– String mode: If one of the two primitive values is a string, then it converts
the other one to a string, concatenates both strings, and returns the result.

– Numbermode: Otherwise, It converts both operands to numbers, adds them,
and returns the result.

String mode lets us use + to assemble strings:

14.3 Assignment operators 103

> 'There are ' + 3 + ' items'
'There are 3 items'

Numbermodemeans that if neither operand is a string (or an object that becomes a string)
then everything is coerced to numbers:

> 4 + true
5

Number(true) is 1.

14.3 Assignment operators
14.3.1 The plain assignment operator
The plain assignment operator is used to change storage locations:

x = value; // assign to a previously declared variable
obj.propKey = value; // assign to a property
arr[index] = value; // assign to an Array element

Initializers in variable declarations can also be viewed as a form of assignment:

const x = value;
let y = value;

14.3.2 Compound assignment operators
Given an operator op, the following two ways of assigning are equivalent:

myvar op= value
myvar = myvar op value

If, for example, op is +, then we get the operator += that works as follows.

let str = '';
str += '';
str += 'Hello!';
str += '';

assert.equal(str, 'Hello!');

14.3.3 A list of all compound assignment operators
• Arithmetic operators:

+= -= *= /= %= **=

+= also works for string concatenation

• Bitwise operators:

<<= >>= >>>= &= ^= |=

104 14 Operators

14.4 Equality: == vs. ===
JavaScript has two kinds of equality operators: loose equality (==) and strict equality
(===). The recommendation is to always use the latter.

Other names for == and ===

• == is also called double equals. Its official name in the language specification is
abstract equality comparison.

• === is also called triple equals.

14.4.1 Loose equality (== and !=)
Loose equality is one of JavaScript’s quirks. It often coerces operands. Some of those
coercions make sense:

> '123' == 123
true
> false == 0
true

Others less so:

> '' == 0
true

Objects are coerced to primitives if (and only if!) the other operand is primitive:

> [1, 2, 3] == '1,2,3'
true
> ['1', '2', '3'] == '1,2,3'
true

If both operands are objects, they are only equal if they are the same object:

> [1, 2, 3] == ['1', '2', '3']
false
> [1, 2, 3] == [1, 2, 3]
false

> const arr = [1, 2, 3];
> arr == arr
true

Lastly, == considers undefined and null to be equal:

> undefined == null
true

https://tc39.github.io/ecma262/#sec-abstract-equality-comparison

14.4 Equality: == vs. === 105

14.4.2 Strict equality (=== and !==)
Strict equality never coerces. Two values are only equal if they have the same type. Let’s
revisit our previous interaction with the == operator and see what the === operator does:

> false === 0
false
> '123' === 123
false

An object is only equal to another value if that value is the same object:

> [1, 2, 3] === '1,2,3'
false
> ['1', '2', '3'] === '1,2,3'
false

> [1, 2, 3] === ['1', '2', '3']
false
> [1, 2, 3] === [1, 2, 3]
false

> const arr = [1, 2, 3];
> arr === arr
true

The === operator does not consider undefined and null to be equal:

> undefined === null
false

14.4.3 Recommendation: always use strict equality
I recommend to always use ===. It makes your code easier to understand and spares you
from having to think about the quirks of ==.

Let’s look at two use cases for == and what I recommend to do instead.

14.4.3.1 Use case for ==: comparing with a number or a string

== lets you check if a value x is a number or that number as a string – with a single
comparison:

if (x == 123) {
// x is either 123 or '123'

}

I prefer either of the following two alternatives:

if (x === 123 || x === '123') ···
if (Number(x) === 123) ···

You can also convert x to a number when you first encounter it.

106 14 Operators

14.4.3.2 Use case for ==: comparing with undefined or null
Another use case for == is to check if a value x is either undefined or null:

if (x == null) {
// x is either null or undefined

}

The problemwith this code is that you can’t be sure if someonemeant to write it that way
or if they made a typo and meant === null.
I prefer either of the following two alternatives:

if (x === undefined || x === null) ···
if (!x) ···

A downside of the second alternative is that it accepts values other than undefined and
null, but it is a well-established pattern in JavaScript (to be explained in detail in §16.3
“Truthiness-based existence checks”).
The following three conditions are also roughly equivalent:

if (x != null) ···
if (x !== undefined && x !== null) ···
if (x) ···

14.4.4 Even stricter than ===: Object.is()
Method Object.is() compares two values:

> Object.is(123, 123)
true
> Object.is(123, '123')
false

It is even stricter than ===. For example, it considers NaN, the error value for computations
involving numbers, to be equal to itself:

> Object.is(NaN, NaN)
true
> NaN === NaN
false

That is occasionally useful. For example, you can use it to implement an improved ver-
sion of the Array method .indexOf():

const myIndexOf = (arr, elem) => {
return arr.findIndex(x => Object.is(x, elem));

};

myIndexOf() finds NaN in an Array, while .indexOf() doesn’t:
> myIndexOf([0,NaN,2], NaN)
1
> [0,NaN,2].indexOf(NaN)
-1

14.6 Various other operators 107

The result -1means that .indexOf() couldn’t find its argument in the Array.

14.5 Ordering operators

Table 14.1: JavaScript’s ordering operators.

Operator name
< less than
<= Less than or equal
> Greater than
>= Greater than or equal

JavaScript’s ordering operators (tbl. 14.1) work for both numbers and strings:

> 5 >= 2
true
> 'bar' < 'foo'
true

<= and >= are based on strict equality.

The ordering operators don’t work well for human languages
The ordering operators don’t work well for comparing text in a human language,
e.g., when capitalization or accents are involved. The details are explained in §20.5
“Comparing strings”.

14.6 Various other operators
Operators for booleans, strings, numbers, objects: are covered elsewhere in this book.

The next two subsections discuss two operators that are rarely used.

14.6.1 Comma operator
The comma operator has two operands, evaluates both of them and returns the second
one:

> 'a', 'b'
'b'

For more information on this operator, see Speaking JavaScript.

14.6.2 void operator
The void operator evaluates its operand and returns undefined:

http://speakingjs.com/es5/ch09.html#comma_operator

108 14 Operators

> void (3 + 2)
undefined

For more information on this operator, see Speaking JavaScript.

Quiz
See quiz app.

http://speakingjs.com/es5/ch09.html#void_operator

Part IV

Primitive values

109

Chapter 15

The non-values undefined and
null

Contents
15.1 undefined vs. null . 111
15.2 Occurrences of undefined and null 112

15.2.1 Occurrences of undefined . 112
15.2.2 Occurrences of null . 112

15.3 Checking for undefined or null . 113
15.4 undefined and null don’t have properties 113
15.5 The history of undefined and null 114

Many programming languages have one “non-value” called null. It indicates that a vari-
able does not currently point to an object – for example, when it hasn’t been initialized
yet.
In contrast, JavaScript has two of them: undefined and null.

15.1 undefined vs. null
Both values are very similar and often used interchangeably. How they differ is therefore
subtle. The language itself makes the following distinction:

• undefined means “not initialized” (e.g., a variable) or “not existing” (e.g., a prop-
erty of an object).

• null means “the intentional absence of any object value” (a quote from the lan-
guage specification).

Programmers may make the following distinction:
• undefined is the non-value used by the language (when something is uninitialized,
etc.).

111

https://tc39.github.io/ecma262/#sec-null-value
https://tc39.github.io/ecma262/#sec-null-value

112 15 The non-values undefined and null

• nullmeans “explicitly switched off”. That is, it helps implement a type that com-
prises both meaningful values and a meta-value that stands for “no meaningful
value”. Such a type is called option type or maybe type in functional programming.

15.2 Occurrences of undefined and null

The following subsections describe where undefined and null appear in the language.
We’ll encounter several mechanisms that are explained in more detail later in this book.

15.2.1 Occurrences of undefined
Uninitialized variable myVar:

let myVar;
assert.equal(myVar, undefined);

Parameter x is not provided:

function func(x) {
return x;

}
assert.equal(func(), undefined);

Property .unknownProp is missing:

const obj = {};
assert.equal(obj.unknownProp, undefined);

If you don’t explicitly specify the result of a function via a return statement, JavaScript
returns undefined for you:

function func() {}
assert.equal(func(), undefined);

15.2.2 Occurrences of null
The prototype of an object is either an object or, at the end of a chain of prototypes, null.
Object.prototype does not have a prototype:

> Object.getPrototypeOf(Object.prototype)
null

If you match a regular expression (such as /a/) against a string (such as 'x'), you either
get an object withmatching data (if matchingwas successful) or null (if matching failed):

> /a/.exec('x')
null

The JSON data format does not support undefined, only null:

> JSON.stringify({a: undefined, b: null})
'{"b":null}'

https://en.wikipedia.org/wiki/Option_type

15.3 Checking for undefined or null 113

15.3 Checking for undefined or null
Checking for either:

if (x === null) ···
if (x === undefined) ···

Does x have a value?

if (x !== undefined && x !== null) {
// ···

}
if (x) { // truthy?

// x is neither: undefined, null, false, 0, NaN, ''
}

Is x either undefined or null?

if (x === undefined || x === null) {
// ···

}
if (!x) { // falsy?

// x is: undefined, null, false, 0, NaN, ''
}

Truthymeans “is true if coerced to boolean”. Falsymeans “is false if coerced to boolean”.
Both concepts are explained properly in §16.2 “Falsy and truthy values”.

15.4 undefined and null don’t have properties
undefined and null are the two only JavaScript values where you get an exception if
you try to read a property. To explore this phenomenon, let’s use the following function,
which reads (“gets”) property .foo and returns the result.

function getFoo(x) {
return x.foo;

}

If we apply getFoo() to various values, we can see that it only fails for undefined and
null:

> getFoo(undefined)
TypeError: Cannot read property 'foo' of undefined
> getFoo(null)
TypeError: Cannot read property 'foo' of null

> getFoo(true)
undefined
> getFoo({})
undefined

114 15 The non-values undefined and null

15.5 The history of undefined and null

In Java (which inspired many aspects of JavaScript), initialization values depend on the
static type of a variable:

• Variables with object types are initialized with null.
• Each primitive type has its own initialization value. For example, int variables are
initialized with 0.

In JavaScript, each variable can hold both object values and primitive values. Therefore,
if null means “not an object”, JavaScript also needs an initialization value that means
“neither an object nor a primitive value”. That initialization value is undefined.

Quiz
See quiz app.

Chapter 16

Booleans

Contents
16.1 Converting to boolean . 115
16.2 Falsy and truthy values . 116

16.2.1 Checking for truthiness or falsiness 117
16.3 Truthiness-based existence checks 117

16.3.1 Pitfall: truthiness-based existence checks are imprecise 118
16.3.2 Use case: was a parameter provided? 118
16.3.3 Use case: does a property exist? 118

16.4 Conditional operator (? :) . 119
16.5 Binary logical operators: And (x && y), Or (x || y) 119

16.5.1 Logical And (x && y) . 120
16.5.2 Logical Or (||) . 120
16.5.3 Default values via logical Or (||) 121

16.6 Logical Not (!) . 121

The primitive type boolean comprises two values – false and true:
> typeof false
'boolean'
> typeof true
'boolean'

16.1 Converting to boolean

The meaning of “converting to [type]”
“Converting to [type]” is short for “Converting arbitrary values to values of type
[type]”.

These are three ways in which you can convert an arbitrary value x to a boolean.

115

116 16 Booleans

• Boolean(x)
Most descriptive; recommended.

• x ? true : false
Uses the conditional operator (explained later in this chapter).

• !!x
Uses the logical Not operator (!). This operator coerces its operand to boolean. It
is applied a second time to get a non-negated result.

Tbl. 16.1 describes how various values are converted to boolean.

Table 16.1: Converting values to booleans.

x Boolean(x)

undefined false
null false
boolean value x (no change)
number value 0 → false, NaN → false

other numbers → true
string value '' → false

other strings → true
object value always true

16.2 Falsy and truthy values
When checking the condition of an if statement, a while loop, or a do-while loop,
JavaScript works differently than you may expect. Take, for example, the following
condition:

if (value) {}

In many programming languages, this condition is equivalent to:
if (value === true) {}

However, in JavaScript, it is equivalent to:
if (Boolean(value) === true) {}

That is, JavaScript checks if value is truewhen converted to boolean. This kind of check
is so common that the following names were introduced:

• A value is called truthy if it is truewhen converted to boolean.
• A value is called falsy if it is false when converted to boolean.

Each value is either truthy or falsy. Consulting tbl. 16.1, we can make an exhaustive list
of falsy values:

• undefined, null
• false
• 0, NaN

16.3 Truthiness-based existence checks 117

• ''

All other values (including all objects) are truthy:
> Boolean('abc')
true
> Boolean([])
true
> Boolean({})
true

16.2.1 Checking for truthiness or falsiness
if (x) {

// x is truthy
}

if (!x) {
// x is falsy

}

if (x) {
// x is truthy

} else {
// x is falsy

}

const result = x ? 'truthy' : 'falsy';

The conditional operator that is used in the last line, is explained later in this chapter.

Exercise: Truthiness
exercises/booleans/truthiness_exrc.mjs

16.3 Truthiness-based existence checks
In JavaScript, if you read something that doesn’t exist (e.g., a missing parameter or a
missing property), you usually get undefined as a result. In these cases, an existence
check amounts to comparing a value with undefined. For example, the following code
checks if object obj has the property .prop:

if (obj.prop !== undefined) {
// obj has property .prop

}

Due to undefined being falsy, we can shorten this check to:
if (obj.prop) {

// obj has property .prop

118 16 Booleans

}

16.3.1 Pitfall: truthiness-based existence checks are imprecise
Truthiness-based existence checks have one pitfall: they are not very precise. Consider
this previous example:

if (obj.prop) {
// obj has property .prop

}

The body of the if statement is skipped if:
• obj.prop is missing (in which case, JavaScript returns undefined).

However, it is also skipped if:
• obj.prop is undefined.
• obj.prop is any other falsy value (null, 0, '', etc.).

In practice, this rarely causes problems, but you have to be aware of this pitfall.

16.3.2 Use case: was a parameter provided?
A truthiness check is often used to determine if the caller of a function provided a param-
eter:

function func(x) {
if (!x) {

throw new Error('Missing parameter x');
}
// ···

}

On the plus side, this pattern is established and short. It correctly throws errors for un-
defined and null.
On the minus side, there is the previously mentioned pitfall: the code also throws errors
for all other falsy values.
An alternative is to check for undefined:

if (x === undefined) {
throw new Error('Missing parameter x');

}

16.3.3 Use case: does a property exist?
Truthiness checks are also often used to determine if a property exists:

function readFile(fileDesc) {
if (!fileDesc.path) {

throw new Error('Missing property: .path');
}

16.4 Conditional operator (? :) 119

// ···
}
readFile({ path: 'foo.txt' }); // no error

This pattern is also established and has the usual caveat: it not only throws if the property
is missing, but also if it exists and has any of the falsy values.

If you truly want to check if the property exists, you have to use the in operator:

if (! ('path' in fileDesc)) {
throw new Error('Missing property: .path');

}

16.4 Conditional operator (? :)
The conditional operator is the expression version of the if statement. Its syntax is:

«condition» ? «thenExpression» : «elseExpression»

It is evaluated as follows:

• If condition is truthy, evaluate and return thenExpression.
• Otherwise, evaluate and return elseExpression.

The conditional operator is also called ternary operator because it has three operands.

Examples:

> true ? 'yes' : 'no'
'yes'
> false ? 'yes' : 'no'
'no'
> '' ? 'yes' : 'no'
'no'

The following code demonstrates that whichever of the two branches “then” and “else”
is chosen via the condition, only that branch is evaluated. The other branch isn’t.

const x = (true ? console.log('then') : console.log('else'));

// Output:
// 'then'

16.5 Binary logical operators: And (x && y), Or (x || y)
The operators && and || are value-preserving and short-circuiting. What does that mean?

Value-preservation means that operands are interpreted as booleans but returned
unchanged:

> 12 || 'hello'
12

120 16 Booleans

> 0 || 'hello'
'hello'

Short-circuitingmeans if the first operand already determines the result, then the second
operand is not evaluated. The only other operator that delays evaluating its operands
is the conditional operator. Usually, all operands are evaluated before performing an
operation.
For example, logical And (&&) does not evaluate its second operand if the first one is falsy:

const x = false && console.log('hello');
// No output

If the first operand is truthy, console.log() is executed:
const x = true && console.log('hello');

// Output:
// 'hello'

16.5.1 Logical And (x && y)
The expression a && b (“a And b”) is evaluated as follows:

1. Evaluate a.
2. Is the result falsy? Return it.
3. Otherwise, evaluate b and return the result.

In other words, the following two expressions are roughly equivalent:
a && b
!a ? a : b

Examples:
> false && true
false
> false && 'abc'
false

> true && false
false
> true && 'abc'
'abc'

> '' && 'abc'
''

16.5.2 Logical Or (||)
The expression a || b (“a Or b”) is evaluated as follows:

1. Evaluate a.
2. Is the result truthy? Return it.

16.6 Logical Not (!) 121

3. Otherwise, evaluate b and return the result.
In other words, the following two expressions are roughly equivalent:

a || b
a ? a : b

Examples:
> true || false
true
> true || 'abc'
true

> false || true
true
> false || 'abc'
'abc'

> 'abc' || 'def'
'abc'

16.5.3 Default values via logical Or (||)
Sometimes you receive a value and only want to use it if it isn’t either null or undefined.
Otherwise, you’d like to use a default value, as a fallback. You can do that via the ||
operator:

const valueToUse = valueReceived || defaultValue;

The following code shows a real-world example:
function countMatches(regex, str) {

const matchResult = str.match(regex); // null or Array
return (matchResult || []).length;

}

If there are one or more matches for regex inside str then .match() returns an Array. If
there are no matches, it unfortunately returns null (and not the empty Array). We fix
that via the || operator.

Exercise: Default values via the Or operator (||)
exercises/booleans/default_via_or_exrc.mjs

16.6 Logical Not (!)
The expression !x (“Not x”) is evaluated as follows:

1. Evaluate x.
2. Is it truthy? Return false.

122 16 Booleans

3. Otherwise, return true.
Examples:

> !false
true
> !true
false

> !0
true
> !123
false

> !''
true
> !'abc'
false

Quiz
See quiz app.

Chapter 17

Numbers

Contents
17.1 JavaScript only has floating point numbers 124
17.2 Number literals . 124

17.2.1 Integer literals . 124
17.2.2 Floating point literals . 125
17.2.3 Syntactic pitfall: properties of integer literals 125

17.3 Arithmetic operators . 125
17.3.1 Binary arithmetic operators 125
17.3.2 Unary plus (+) and negation (-) 126
17.3.3 Incrementing (++) and decrementing (--) 126

17.4 Converting to number . 127
17.5 Error values . 128
17.6 Error value: NaN . 128

17.6.1 Checking for NaN . 129
17.6.2 Finding NaN in Arrays . 129

17.7 Error value: Infinity . 130
17.7.1 Infinity as a default value 130
17.7.2 Checking for Infinity . 130

17.8 The precision of numbers: careful with decimal fractions 131
17.9 (Advanced) . 131
17.10Background: floating point precision 131

17.10.1 A simplified representation of floating point numbers 132
17.11Integers in JavaScript . 133

17.11.1 Converting to integer . 133
17.11.2 Ranges of integers in JavaScript 134
17.11.3 Safe integers . 134

17.12Bitwise operators . 135
17.12.1 Internally, bitwise operators work with 32-bit integers 135
17.12.2 Binary bitwise operators . 136

123

124 17 Numbers

17.12.3 Bitwise Not . 137
17.12.4 Bitwise shift operators . 137
17.12.5 b32(): displaying unsigned 32-bit integers in binary notation . 137

17.13Quick reference: numbers . 138
17.13.1 Global functions for numbers 138
17.13.2 Static properties of Number . 138
17.13.3 Static methods of Number . 139
17.13.4Methods of Number.prototype 140
17.13.5 Sources . 142

This chapter covers JavaScript’s single type for numbers, number.

17.1 JavaScript only has floating point numbers
You can express both integers and floating point numbers in JavaScript:

98
123.45

However, there is only a single type for all numbers: they are all doubles, 64-bit floating
point numbers implemented according to the IEEE Standard for Floating-Point Arith-
metic (IEEE 754).
Integers are simply floating point numbers without a decimal fraction:

> 98 === 98.0
true

Note that, under the hood, most JavaScript engines are often able to use real integers,
with all associated performance and storage size benefits.

17.2 Number literals
Let’s examine literals for numbers.

17.2.1 Integer literals
Several integer literals let you express integers with various bases:

// Binary (base 2)
assert.equal(0b11, 3);

// Octal (base 8)
assert.equal(0o10, 8);

// Decimal (base 10):
assert.equal(35, 35);

// Hexadecimal (base 16)
assert.equal(0xE7, 231);

17.3 Arithmetic operators 125

17.2.2 Floating point literals
Floating point numbers can only be expressed in base 10.
Fractions:

> 35.0
35

Exponent: eNmeans ×10N

> 3e2
300
> 3e-2
0.03
> 0.3e2
30

17.2.3 Syntactic pitfall: properties of integer literals
Accessing a property of an integer literal entails a pitfall: If the integer literal is immedi-
ately followed by a dot, then that dot is interpreted as a decimal dot:

7.toString(); // syntax error

There are four ways to work around this pitfall:
7.0.toString()
(7).toString()
7..toString()
7 .toString() // space before dot

17.3 Arithmetic operators
17.3.1 Binary arithmetic operators
Tbl. 17.1 lists JavaScript’s binary arithmetic operators.

Table 17.1: Binary arithmetic operators.

Operator Name Example
n + m Addition ES1 3 + 4 → 7
n - m Subtraction ES1 9 - 1 → 8
n * m Multiplication ES1 3 * 2.25 → 6.75
n / m Division ES1 5.625 / 5 → 1.125
n % m Remainder ES1 8 % 5 → 3

-8 % 5 → -3
n ** m Exponentiation ES2016 4 ** 2 → 16

126 17 Numbers

17.3.1.1 % is a remainder operator
% is a remainder operator, not a modulo operator. Its result has the sign of the first
operand:

> 5 % 3
2
> -5 % 3
-2

Formore information on the difference between remainder andmodulo, see the blog post
“Remainder operator vs. modulo operator (with JavaScript code)” on 2ality.

17.3.2 Unary plus (+) and negation (-)
Tbl. 17.2 summarizes the two operators unary plus (+) and negation (-).

Table 17.2: The operators unary plus (+) and negation (-).

Operator Name Example
+n Unary plus ES1 +(-7) → -7
-n Unary negation ES1 -(-7) → 7

Both operators coerce their operands to numbers:
> +'5'
5
> +'-12'
-12
> -'9'
-9

Thus, unary plus lets us convert arbitrary values to numbers.

17.3.3 Incrementing (++) and decrementing (--)
The incrementation operator ++ exists in a prefix version and a suffix version. In both
versions, it destructively adds one to its operand. Therefore, its operandmust be a storage
location that can be changed.
The decrementation operator --works the same, but subtracts one from its operand. The
next two examples explain the difference between the prefix and the suffix version.
Tbl. 17.3 summarizes the incrementation and decrementation operators.

Table 17.3: Incrementation operators and decrementation operators.

Operator Name Example
v++ Increment ES1 let v=0; [v++, v] → [0, 1]
++v Increment ES1 let v=0; [++v, v] → [1, 1]

https://2ality.com/2019/08/remainder-vs-modulo.html

17.4 Converting to number 127

Operator Name Example
v-- Decrement ES1 let v=1; [v--, v] → [1, 0]
--v Decrement ES1 let v=1; [--v, v] → [0, 0]

Next, we’ll look at examples of these operators in use.
Prefix ++ and prefix -- change their operands and then return them.

let foo = 3;
assert.equal(++foo, 4);
assert.equal(foo, 4);

let bar = 3;
assert.equal(--bar, 2);
assert.equal(bar, 2);

Suffix ++ and suffix -- return their operands and then change them.
let foo = 3;
assert.equal(foo++, 3);
assert.equal(foo, 4);

let bar = 3;
assert.equal(bar--, 3);
assert.equal(bar, 2);

17.3.3.1 Operands: not just variables
You can also apply these operators to property values:

const obj = { a: 1 };
++obj.a;
assert.equal(obj.a, 2);

And to Array elements:
const arr = [4];
arr[0]++;
assert.deepEqual(arr, [5]);

Exercise: Number operators
exercises/numbers-math/is_odd_test.mjs

17.4 Converting to number
These are three ways of converting values to numbers:

• Number(value)

128 17 Numbers

• +value
• parseFloat(value) (avoid; different than the other two!)

Recommendation: use the descriptive Number(). Tbl. 17.4 summarizes how it works.

Table 17.4: Converting values to numbers.

x Number(x)

undefined NaN
null 0
boolean false → 0, true → 1
number x (no change)
string '' → 0

other → parsed number, ignoring leading/trailing whitespace
object configurable (e.g. via .valueOf())

Examples:
assert.equal(Number(123.45), 123.45);

assert.equal(Number(''), 0);
assert.equal(Number('\n 123.45 \t'), 123.45);
assert.equal(Number('xyz'), NaN);

How objects are converted to numbers can be configured – for example, by overriding
.valueOf():

> Number({ valueOf() { return 123 } })
123

Exercise: Converting to number
exercises/numbers-math/parse_number_test.mjs

17.5 Error values
Two number values are returned when errors happen:

• NaN
• Infinity

17.6 Error value: NaN
NaN is an abbreviation of “not a number”. Ironically, JavaScript considers it to be a num-
ber:

> typeof NaN
'number'

17.6 Error value: NaN 129

When is NaN returned?
NaN is returned if a number can’t be parsed:

> Number('$$$')
NaN
> Number(undefined)
NaN

NaN is returned if an operation can’t be performed:
> Math.log(-1)
NaN
> Math.sqrt(-1)
NaN

NaN is returned if an operand or argument is NaN (to propagate errors):
> NaN - 3
NaN
> 7 ** NaN
NaN

17.6.1 Checking for NaN
NaN is the only JavaScript value that is not strictly equal to itself:

const n = NaN;
assert.equal(n === n, false);

These are several ways of checking if a value x is NaN:
const x = NaN;

assert.equal(Number.isNaN(x), true); // preferred
assert.equal(Object.is(x, NaN), true);
assert.equal(x !== x, true);

In the last line, we use the comparison quirk to detect NaN.

17.6.2 Finding NaN in Arrays
Some Array methods can’t find NaN:

> [NaN].indexOf(NaN)
-1

Others can:
> [NaN].includes(NaN)
true
> [NaN].findIndex(x => Number.isNaN(x))
0
> [NaN].find(x => Number.isNaN(x))
NaN

130 17 Numbers

Alas, there is no simple rule of thumb. You have to check for eachmethod how it handles
NaN.

17.7 Error value: Infinity
When is the error value Infinity returned?

Infinity is returned if a number is too large:

> Math.pow(2, 1023)
8.98846567431158e+307
> Math.pow(2, 1024)
Infinity

Infinity is returned if there is a division by zero:

> 5 / 0
Infinity
> -5 / 0
-Infinity

17.7.1 Infinity as a default value
Infinity is larger than all other numbers (except NaN), making it a good default value:

function findMinimum(numbers) {
let min = Infinity;
for (const n of numbers) {

if (n < min) min = n;
}
return min;

}

assert.equal(findMinimum([5, -1, 2]), -1);
assert.equal(findMinimum([]), Infinity);

17.7.2 Checking for Infinity
These are two common ways of checking if a value x is Infinity:

const x = Infinity;

assert.equal(x === Infinity, true);
assert.equal(Number.isFinite(x), false);

Exercise: Comparing numbers
exercises/numbers-math/find_max_test.mjs

17.10 Background: floating point precision 131

17.8 The precision of numbers: careful with decimal frac-
tions

Internally, JavaScript floating point numbers are represented with base 2 (according to
the IEEE 754 standard). That means that decimal fractions (base 10) can’t always be rep-
resented precisely:

> 0.1 + 0.2
0.30000000000000004
> 1.3 * 3
3.9000000000000004
> 1.4 * 100000000000000
139999999999999.98

You therefore need to take rounding errors into consideration when performing arith-
metic in JavaScript.
Read on for an explanation of this phenomenon.

Quiz: basic
See quiz app.

17.9 (Advanced)
All remaining sections of this chapter are advanced.

17.10 Background: floating point precision
In JavaScript, computations with numbers don’t always produce correct results – for ex-
ample:

> 0.1 + 0.2
0.30000000000000004

To understandwhy, we need to explore how JavaScript represents floating point numbers
internally. It uses three integers to do so, which take up a total of 64 bits of storage (double
precision):

Component Size Integer range
Sign 1 bit [0, 1]
Fraction 52 bits [0, 252−1]
Exponent 11 bits [−1023, 1024]

The floating point number represented by these integers is computed as follows:

(–1)sign × 0b1.fraction × 2exponent

132 17 Numbers

This representation can’t encode a zero because its second component (involving the frac-
tion) always has a leading 1. Therefore, a zero is encoded via the special exponent −1023
and a fraction 0.

17.10.1 A simplified representation of floating point numbers
To make further discussions easier, we simplify the previous representation:

• Instead of base 2 (binary), we use base 10 (decimal) because that’s what most peo-
ple are more familiar with.

• The fraction is a natural number that is interpreted as a fraction (digits after a point).
We switch to a mantissa, an integer that is interpreted as itself. As a consequence,
the exponent is used differently, but its fundamental role doesn’t change.

• As the mantissa is an integer (with its own sign), we don’t need a separate sign,
anymore.

The new representation works like this:

mantissa × 10exponent

Let’s try out this representation for a few floating point numbers.

• For the integer −123, we mainly need the mantissa:

> -123 * (10 ** 0)
-123

• For the number 1.5, we imagine there being a point after the mantissa. We use a
negative exponent to move that point one digit to the left:

> 15 * (10 ** -1)
1.5

• For the number 0.25, we move the point two digits to the left:

> 25 * (10 ** -2)
0.25

Representations with negative exponents can also be written as fractions with positive
exponents in the denominators:

> 15 * (10 ** -1) === 15 / (10 ** 1)
true
> 25 * (10 ** -2) === 25 / (10 ** 2)
true

These fractions help with understanding why there are numbers that our encoding can-
not represent:

• 1/10 can be represented. It already has the required format: a power of 10 in the
denominator.

• 1/2 can be represented as 5/10. We turned the 2 in the denominator into a power
of 10 by multiplying the numerator and denominator by 5.

17.11 Integers in JavaScript 133

• 1/4 can be represented as 25/100. We turned the 4 in the denominator into a power
of 10 by multiplying the numerator and denominator by 25.

• 1/3 cannot be represented. There is no way to turn the denominator into a power
of 10. (The prime factors of 10 are 2 and 5. Therefore, any denominator that only
has these prime factors can be converted to a power of 10, by multiplying both the
numerator and denominator by enough twos and fives. If a denominator has a
different prime factor, then there’s nothing we can do.)

To conclude our excursion, we switch back to base 2:
• 0.5 = 1/2 can be represented with base 2 because the denominator is already a
power of 2.

• 0.25 = 1/4 can be represented with base 2 because the denominator is already a
power of 2.

• 0.1 = 1/10 cannot be represented because the denominator cannot be converted
to a power of 2.

• 0.2 = 2/10 cannot be represented because the denominator cannot be converted
to a power of 2.

Now we can see why 0.1 + 0.2 doesn’t produce a correct result: internally, neither of
the two operands can be represented precisely.
The only way to compute precisely with decimal fractions is by internally switching to
base 10. For many programming languages, base 2 is the default and base 10 an option.
For example, Java has the class BigDecimal and Python has the module decimal. There
are tentative plans to add something similar to JavaScript: the ECMAScript proposal
“Decimal” is currently at stage 0.

17.11 Integers in JavaScript
JavaScript doesn’t have a special type for integers. Instead, they are simply normal (float-
ing point) numbers without a decimal fraction:

> 1 === 1.0
true
> Number.isInteger(1.0)
true

In this section, we’ll look at a few tools for working with these pseudo-integers.

17.11.1 Converting to integer
The recommended way of converting numbers to integers is to use one of the rounding
methods of the Math object:

• Math.floor(n): returns the largest integer i ≤ n
> Math.floor(2.1)
2
> Math.floor(2.9)
2

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.python.org/3/library/decimal.html
https://github.com/tc39/proposals/blob/master/stage-0-proposals.md
https://github.com/tc39/proposals/blob/master/stage-0-proposals.md

134 17 Numbers

• Math.ceil(n): returns the smallest integer i ≥ n
> Math.ceil(2.1)
3
> Math.ceil(2.9)
3

• Math.round(n): returns the integer that is “closest” to n with __.5 being rounded
up – for example:

> Math.round(2.4)
2
> Math.round(2.5)
3

• Math.trunc(n): removes any decimal fraction (after the point) that n has, therefore
turning it into an integer.

> Math.trunc(2.1)
2
> Math.trunc(2.9)
2

For more information on rounding, consult §18.3 “Rounding”.

17.11.2 Ranges of integers in JavaScript
These are important ranges of integers in JavaScript:

• Safe integers: can be represented “safely” by JavaScript (more onwhat that means
in the next subsection)

– Precision: 53 bits plus sign
– Range: (−253, 253)

• Array indices
– Precision: 32 bits, unsigned
– Range: [0, 232−1) (excluding the maximum length)
– Typed Arrays have a larger range of 53 bits (safe and unsigned)

• Bitwise operators (bitwise Or, etc.)
– Precision: 32 bits
– Range of unsigned right shift (>>>): unsigned, [0, 232)
– Range of all other bitwise operators: signed, [−231, 231)

17.11.3 Safe integers
This is the range of integers that are safe in JavaScript (53 bits plus a sign):

[–253–1, 253–1]
An integer is safe if it is represented by exactly one JavaScript number. Given that
JavaScript numbers are encoded as a fraction multiplied by 2 to the power of an
exponent, higher integers can also be represented, but then there are gaps between them.
For example (18014398509481984 is 254):

17.12 Bitwise operators 135

> 18014398509481984
18014398509481984
> 18014398509481985
18014398509481984
> 18014398509481986
18014398509481984
> 18014398509481987
18014398509481988

The following properties of Number help determine if an integer is safe:

assert.equal(Number.MAX_SAFE_INTEGER, (2 ** 53) - 1);
assert.equal(Number.MIN_SAFE_INTEGER, -Number.MAX_SAFE_INTEGER);

assert.equal(Number.isSafeInteger(5), true);
assert.equal(Number.isSafeInteger('5'), false);
assert.equal(Number.isSafeInteger(5.1), false);
assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER), true);
assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER+1), false);

Exercise: Detecting safe integers
exercises/numbers-math/is_safe_integer_test.mjs

17.11.3.1 Safe computations

Let’s look at computations involving unsafe integers.

The following result is incorrect and unsafe, even though both of its operands are safe:

> 9007199254740990 + 3
9007199254740992

The following result is safe, but incorrect. The first operand is unsafe; the second operand
is safe:

> 9007199254740995 - 10
9007199254740986

Therefore, the result of an expression a op b is correct if and only if:

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

That is, both operands and the result must be safe.

17.12 Bitwise operators
17.12.1 Internally, bitwise operators work with 32-bit integers
Internally, JavaScript’s bitwise operators work with 32-bit integers. They produce their
results in the following steps:

136 17 Numbers

• Input (JavaScript numbers): The 1–2 operands are first converted to JavaScript
numbers (64-bit floating point numbers) and then to 32-bit integers.

• Computation (32-bit integers): The actual operation processes 32-bit integers and
produces a 32-bit integer.

• Output (JavaScript number): Before returning the result, it is converted back to a
JavaScript number.

17.12.1.1 The types of operands and results
For each bitwise operator, this book mentions the types of its operands and its result.
Each type is always one of the following two:

Type Description Size Range
Int32 signed 32-bit integer 32 bits incl. sign [−231, 231)
Uint32 unsigned 32-bit integer 32 bits [0, 232)

Considering the previously mentioned steps, I recommend to pretend that bitwise oper-
ators internally work with unsigned 32-bit integers (step “computation”) and that Int32
and Uint32 only affect how JavaScript numbers are converted to and from integers (steps
“input” and “output”).

17.12.1.2 Displaying JavaScript numbers as unsigned 32-bit integers
While exploring the bitwise operators, it occasionally helps to display JavaScript numbers
as unsigned 32-bit integers in binary notation. That’s what b32() does (whose implemen-
tation is shown later):

assert.equal(
b32(-1),
'11111111111111111111111111111111');

assert.equal(
b32(1),
'00000000000000000000000000000001');

assert.equal(
b32(2 ** 31),
'10000000000000000000000000000000');

17.12.2 Binary bitwise operators

Table 17.7: Binary bitwise operators.

Operation Name Type signature
num1 & num2 Bitwise And Int32 × Int32 → Int32 ES1
num1 ¦ num2 Bitwise Or Int32 × Int32 → Int32 ES1
num1 ^ num2 Bitwise Xor Int32 × Int32 → Int32 ES1

17.12 Bitwise operators 137

The binary bitwise operators (tbl. 17.7) combine the bits of their operands to produce
their results:

> (0b1010 & 0b0011).toString(2).padStart(4, '0')
'0010'
> (0b1010 | 0b0011).toString(2).padStart(4, '0')
'1011'
> (0b1010 ^ 0b0011).toString(2).padStart(4, '0')
'1001'

17.12.3 Bitwise Not
Table 17.8: The bitwise Not operator.

Operation Name Type signature
~num Bitwise Not, ones’ complement Int32 → Int32 ES1

The bitwise Not operator (tbl. 17.8) inverts each binary digit of its operand:
> b32(~0b100)
'11111111111111111111111111111011'

17.12.4 Bitwise shift operators

Table 17.9: Bitwise shift operators.

Operation Name Type signature
num << count Left shift Int32 × Uint32 → Int32 ES1
num >> count Signed right shift Int32 × Uint32 → Int32 ES1
num >>> count Unsigned right shift Uint32 × Uint32 → Uint32 ES1

The shift operators (tbl. 17.9) move binary digits to the left or to the right:

> (0b10 << 1).toString(2)
'100'

>> preserves highest bit, >>> doesn’t:

> b32(0b10000000000000000000000000000010 >> 1)
'11000000000000000000000000000001'
> b32(0b10000000000000000000000000000010 >>> 1)
'01000000000000000000000000000001'

17.12.5 b32(): displaying unsigned 32-bit integers in binary notation
We have now used b32() a few times. The following code is an implementation of it:

138 17 Numbers

/**
* Return a string representing n as a 32-bit unsigned integer,
* in binary notation.
*/
function b32(n) {

// >>> ensures highest bit isn’t interpreted as a sign
return (n >>> 0).toString(2).padStart(32, '0');

}
assert.equal(

b32(6),
'00000000000000000000000000000110');

n >>> 0 means that we are shifting n zero bits to the right. Therefore, in principle, the
>>> operator does nothing, but it still coerces n to an unsigned 32-bit integer:

> 12 >>> 0
12
> -12 >>> 0
4294967284
> (2**32 + 1) >>> 0
1

17.13 Quick reference: numbers
17.13.1 Global functions for numbers
JavaScript has the following four global functions for numbers:

• isFinite()
• isNaN()
• parseFloat()
• parseInt()

However, it is better to use the corresponding methods of Number (Number.isFinite(),
etc.), which have fewer pitfalls. They were introduced with ES6 and are discussed below.

17.13.2 Static properties of Number
• .EPSILON: number [ES6]

The difference between 1 and the next representable floating point number. In
general, amachine epsilon provides an upper bound for rounding errors in floating
point arithmetic.

– Approximately: 2.2204460492503130808472633361816 × 10-16

• .MAX_SAFE_INTEGER: number [ES6]

The largest integer that JavaScript can represent unambiguously (253−1).
• .MAX_VALUE: number [ES1]

The largest positive finite JavaScript number.

https://en.wikipedia.org/wiki/Machine_epsilon

17.13 Quick reference: numbers 139

– Approximately: 1.7976931348623157 × 10308

• .MIN_SAFE_INTEGER: number [ES6]

The smallest integer that JavaScript can represent unambiguously (−253+1).
• .MIN_VALUE: number [ES1]

The smallest positive JavaScript number. Approximately 5 × 10−324.
• .NaN: number [ES1]

The same as the global variable NaN.
• .NEGATIVE_INFINITY: number [ES1]

The same as -Number.POSITIVE_INFINITY.
• .POSITIVE_INFINITY: number [ES1]

The same as the global variable Infinity.

17.13.3 Static methods of Number
• .isFinite(num: number): boolean [ES6]

Returns true if num is an actual number (neither Infinity nor -Infinity nor NaN).
> Number.isFinite(Infinity)
false
> Number.isFinite(-Infinity)
false
> Number.isFinite(NaN)
false
> Number.isFinite(123)
true

• .isInteger(num: number): boolean [ES6]

Returns true if num is a number and does not have a decimal fraction.
> Number.isInteger(-17)
true
> Number.isInteger(33)
true
> Number.isInteger(33.1)
false
> Number.isInteger('33')
false
> Number.isInteger(NaN)
false
> Number.isInteger(Infinity)
false

• .isNaN(num: number): boolean [ES6]

Returns true if num is the value NaN:

140 17 Numbers

> Number.isNaN(NaN)
true
> Number.isNaN(123)
false
> Number.isNaN('abc')
false

• .isSafeInteger(num: number): boolean [ES6]

Returns true if num is a number and unambiguously represents an integer.

• .parseFloat(str: string): number [ES6]

Coerces its parameter to string and parses it as a floating point number. For con-
verting strings to numbers, Number() (which ignores leading and trailing white-
space) is usually a better choice than Number.parseFloat() (which ignores leading
whitespace and illegal trailing characters and can hide problems).

> Number.parseFloat(' 123.4#')
123.4
> Number(' 123.4#')
NaN

• .parseInt(str: string, radix=10): number [ES6]

Coerces its parameter to string and parses it as an integer, ignoring leading white-
space and illegal trailing characters:

> Number.parseInt(' 123#')
123

The parameter radix specifies the base of the number to be parsed:

> Number.parseInt('101', 2)
5
> Number.parseInt('FF', 16)
255

Do not use this method to convert numbers to integers: coercing to string is ineffi-
cient. And stopping before the first non-digit is not a good algorithm for removing
the fraction of a number. Here is an example where it goes wrong:

> Number.parseInt(1e21, 10) // wrong
1

It is better to use one of the rounding functions of Math to convert a number to an
integer:

> Math.trunc(1e21) // correct
1e+21

17.13.4 Methods of Number.prototype
(Number.prototype is where the methods of numbers are stored.)

17.13 Quick reference: numbers 141

• .toExponential(fractionDigits?: number): string [ES3]

Returns a string that represents the number via exponential notation. With frac-
tionDigits, you can specify, howmany digits should be shown of the number that
ismultipliedwith the exponent (the default is to show asmany digits as necessary).
Example: number too small to get a positive exponent via .toString().

> 1234..toString()
'1234'

> 1234..toExponential() // 3 fraction digits
'1.234e+3'
> 1234..toExponential(5)
'1.23400e+3'
> 1234..toExponential(1)
'1.2e+3'

Example: fraction not small enough to get a negative exponent via .toString().
> 0.003.toString()
'0.003'
> 0.003.toExponential()
'3e-3'

• .toFixed(fractionDigits=0): string [ES3]

Returns an exponent-free representation of the number, rounded to fractionDig-
its digits.

> 0.00000012.toString() // with exponent
'1.2e-7'

> 0.00000012.toFixed(10) // no exponent
'0.0000001200'
> 0.00000012.toFixed()
'0'

If the number is 1021 or greater, even .toFixed() uses an exponent:
> (10 ** 21).toFixed()
'1e+21'

• .toPrecision(precision?: number): string [ES3]

Works like .toString(), but precision specifies how many digits should be
shown. If precision is missing, .toString() is used.

> 1234..toPrecision(3) // requires exponential notation
'1.23e+3'

> 1234..toPrecision(4)
'1234'

142 17 Numbers

> 1234..toPrecision(5)
'1234.0'

> 1.234.toPrecision(3)
'1.23'

• .toString(radix=10): string [ES1]

Returns a string representation of the number.
By default, you get a base 10 numeral as a result:

> 123.456.toString()
'123.456'

If you want the numeral to have a different base, you can specify it via radix:
> 4..toString(2) // binary (base 2)
'100'
> 4.5.toString(2)
'100.1'

> 255..toString(16) // hexadecimal (base 16)
'ff'
> 255.66796875.toString(16)
'ff.ab'

> 1234567890..toString(36)
'kf12oi'

parseInt() provides the inverse operation: it converts a string that contains an
integer (no fraction!) numeral with a given base, to a number.

> parseInt('kf12oi', 36)
1234567890

17.13.5 Sources
• Wikipedia
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

Quiz: advanced
See quiz app.

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

Chapter 18

Math

Contents
18.1 Data properties . 143
18.2 Exponents, roots, logarithms . 144
18.3 Rounding . 145
18.4 Trigonometric Functions . 146
18.5 Various other functions . 148
18.6 Sources . 149

Math is an object with data properties and methods for processing numbers. You can see
it as a poor man’s module: It was created long before JavaScript had modules.

18.1 Data properties
• Math.E: number [ES1]

Euler’s number, base of the natural logarithms, approximately 2.7182818284590452354.

• Math.LN10: number [ES1]

The natural logarithm of 10, approximately 2.302585092994046.

• Math.LN2: number [ES1]

The natural logarithm of 2, approximately 0.6931471805599453.

• Math.LOG10E: number [ES1]

The logarithm of e to base 10, approximately 0.4342944819032518.

• Math.LOG2E: number [ES1]

The logarithm of e to base 2, approximately 1.4426950408889634.

• Math.PI: number [ES1]

143

144 18 Math

The mathematical constant π, ratio of a circle’s circumference to its diameter, ap-
proximately 3.1415926535897932.

• Math.SQRT1_2: number [ES1]

The square root of 1/2, approximately 0.7071067811865476.
• Math.SQRT2: number [ES1]

The square root of 2, approximately 1.4142135623730951.

18.2 Exponents, roots, logarithms
• Math.cbrt(x: number): number [ES6]

Returns the cube root of x.
> Math.cbrt(8)
2

• Math.exp(x: number): number [ES1]

Returns ex (e being Euler’s number). The inverse of Math.log().
> Math.exp(0)
1
> Math.exp(1) === Math.E
true

• Math.expm1(x: number): number [ES6]

Returns Math.exp(x)-1. The inverse of Math.log1p(). Very small numbers (frac-
tions close to 0) are represented with a higher precision. Therefore, this function
returns more precise values whenever .exp() returns values close to 1.

• Math.log(x: number): number [ES1]

Returns the natural logarithm of x (to base e, Euler’s number). The inverse of
Math.exp().

> Math.log(1)
0
> Math.log(Math.E)
1
> Math.log(Math.E ** 2)
2

• Math.log1p(x: number): number [ES6]

Returns Math.log(1 + x). The inverse of Math.expm1(). Very small numbers
(fractions close to 0) are represented with a higher precision. Therefore, you can
provide this function with a more precise argument whenever the argument for
.log() is close to 1.

• Math.log10(x: number): number [ES6]

18.3 Rounding 145

Returns the logarithm of x to base 10. The inverse of 10 ** x.

> Math.log10(1)
0
> Math.log10(10)
1
> Math.log10(100)
2

• Math.log2(x: number): number [ES6]

Returns the logarithm of x to base 2. The inverse of 2 ** x.

> Math.log2(1)
0
> Math.log2(2)
1
> Math.log2(4)
2

• Math.pow(x: number, y: number): number [ES1]

Returns xy, x to the power of y. The same as x ** y.

> Math.pow(2, 3)
8
> Math.pow(25, 0.5)
5

• Math.sqrt(x: number): number [ES1]

Returns the square root of x. The inverse of x ** 2.

> Math.sqrt(9)
3

18.3 Rounding
Rounding means converting an arbitrary number to an integer (a number without a dec-
imal fraction). The following functions implement different approaches to rounding.

• Math.ceil(x: number): number [ES1]

Returns the smallest (closest to −∞) integer iwith x ≤ i.

> Math.ceil(2.1)
3
> Math.ceil(2.9)
3

• Math.floor(x: number): number [ES1]

Returns the largest (closest to +∞) integer iwith i ≤ x.

146 18 Math

> Math.floor(2.1)
2
> Math.floor(2.9)
2

• Math.round(x: number): number [ES1]

Returns the integer that is closest to x. If the decimal fraction of x is .5 then
.round() rounds up (to the integer closer to positive infinity):

> Math.round(2.4)
2
> Math.round(2.5)
3

• Math.trunc(x: number): number [ES6]

Removes the decimal fraction of x and returns the resulting integer.
> Math.trunc(2.1)
2
> Math.trunc(2.9)
2

Tbl. 18.1 shows the results of the rounding functions for a few representative inputs.

Table 18.1: Rounding functions of Math. Note how things change with
negative numbers because “larger” always means “closer to positive in-
finity”.

-2.9 -2.5 -2.1 2.1 2.5 2.9

Math.floor -3 -3 -3 2 2 2
Math.ceil -2 -2 -2 3 3 3
Math.round -3 -2 -2 2 3 3
Math.trunc -2 -2 -2 2 2 2

18.4 Trigonometric Functions
All angles are specified in radians. Use the following two functions to convert between
degrees and radians.

function degreesToRadians(degrees) {
return degrees / 180 * Math.PI;

}
assert.equal(degreesToRadians(90), Math.PI/2);

function radiansToDegrees(radians) {
return radians / Math.PI * 180;

}
assert.equal(radiansToDegrees(Math.PI), 180);

18.4 Trigonometric Functions 147

• Math.acos(x: number): number [ES1]

Returns the arc cosine (inverse cosine) of x.

> Math.acos(0)
1.5707963267948966
> Math.acos(1)
0

• Math.acosh(x: number): number [ES6]

Returns the inverse hyperbolic cosine of x.

• Math.asin(x: number): number [ES1]

Returns the arc sine (inverse sine) of x.

> Math.asin(0)
0
> Math.asin(1)
1.5707963267948966

• Math.asinh(x: number): number [ES6]

Returns the inverse hyperbolic sine of x.

• Math.atan(x: number): number [ES1]

Returns the arc tangent (inverse tangent) of x.

• Math.atanh(x: number): number [ES6]

Returns the inverse hyperbolic tangent of x.

• Math.atan2(y: number, x: number): number [ES1]

Returns the arc tangent of the quotient y/x.

• Math.cos(x: number): number [ES1]

Returns the cosine of x.

> Math.cos(0)
1
> Math.cos(Math.PI)
-1

• Math.cosh(x: number): number [ES6]

Returns the hyperbolic cosine of x.

• Math.hypot(...values: number[]): number [ES6]

Returns the square root of the sum of the squares of values (Pythagoras’ theorem):

> Math.hypot(3, 4)
5

148 18 Math

• Math.sin(x: number): number [ES1]

Returns the sine of x.
> Math.sin(0)
0
> Math.sin(Math.PI / 2)
1

• Math.sinh(x: number): number [ES6]

Returns the hyperbolic sine of x.
• Math.tan(x: number): number [ES1]

Returns the tangent of x.
> Math.tan(0)
0
> Math.tan(1)
1.5574077246549023

• Math.tanh(x: number): number; [ES6]

Returns the hyperbolic tangent of x.

18.5 Various other functions
• Math.abs(x: number): number [ES1]

Returns the absolute value of x.
> Math.abs(3)
3
> Math.abs(-3)
3
> Math.abs(0)
0

• Math.clz32(x: number): number [ES6]

Counts the leading zero bits in the 32-bit integer x. Used in DSP algorithms.
> Math.clz32(0b01000000000000000000000000000000)
1
> Math.clz32(0b00100000000000000000000000000000)
2
> Math.clz32(2)
30
> Math.clz32(1)
31

• Math.max(...values: number[]): number [ES1]

Converts values to numbers and returns the largest one.

18.6 Sources 149

> Math.max(3, -5, 24)
24

• Math.min(...values: number[]): number [ES1]

Converts values to numbers and returns the smallest one.
> Math.min(3, -5, 24)
-5

• Math.random(): number [ES1]

Returns a pseudo-random number nwhere 0 ≤ n < 1.
Computing a random integer iwhere 0 ≤ i < max:

function getRandomInteger(max) {
return Math.floor(Math.random() * max);

}

• Math.sign(x: number): number [ES6]

Returns the sign of a number:
> Math.sign(-8)
-1
> Math.sign(0)
0
> Math.sign(3)
1

18.6 Sources
• Wikipedia
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

150 18 Math

Chapter 19

Unicode – a brief introduction
(advanced)

Contents
19.1 Code points vs. code units . 151

19.1.1 Code points . 152
19.1.2 Encoding Unicode code points: UTF-32, UTF-16, UTF-8 152

19.2 Encodings used in web development: UTF-16 and UTF-8 154
19.2.1 Source code internally: UTF-16 154
19.2.2 Strings: UTF-16 . 154
19.2.3 Source code in files: UTF-8 . 154

19.3 Grapheme clusters – the real characters 154

Unicode is a standard for representing and managing text in most of the world’s writing
systems. Virtually all modern software that works with text, supports Unicode. The
standard is maintained by the Unicode Consortium. A new version of the standard is
published every year (with new emojis, etc.). Unicode version 1.0.0 was published in
October 1991.

19.1 Code points vs. code units
Two concepts are crucial for understanding Unicode:

• Code points are numbers that represent Unicode characters.
• Code units are numbers that encode code points, to store or transmit Unicode text.
One or more code units encode a single code point. Each code unit has the same
size, which depends on the encoding format that is used. The most popular format,
UTF-8, has 8-bit code units.

151

152 19 Unicode – a brief introduction (advanced)

19.1.1 Code points
The first version of Unicode had 16-bit code points. Since then, the number of characters
has grown considerably and the size of code points was extended to 21 bits. These 21 bits
are partitioned in 17 planes, with 16 bits each:

• Plane 0: Basic Multilingual Plane (BMP), 0x0000–0xFFFF
– Contains characters for almost all modern languages (Latin characters, Asian
characters, etc.) and many symbols.

• Plane 1: Supplementary Multilingual Plane (SMP), 0x10000–0x1FFFF
– Supports historic writing systems (e.g., Egyptian hieroglyphs and cuneiform)
and additional modern writing systems.

– Supports emojis and many other symbols.
• Plane 2: Supplementary Ideographic Plane (SIP), 0x20000–0x2FFFF

– Contains additional CJK (Chinese, Japanese, Korean) ideographs.
• Plane 3–13: Unassigned
• Plane 14: Supplementary Special-Purpose Plane (SSP), 0xE0000–0xEFFFF

– Contains non-graphical characters such as tag characters and glyph variation
selectors.

• Plane 15–16: Supplementary Private Use Area (S PUA A/B), 0x0F0000–0x10FFFF
– Available for character assignment by parties outside the ISO and the Uni-
code Consortium. Not standardized.

Planes 1-16 are called supplementary planes or astral planes.

Let’s check the code points of a few characters:

> 'A'.codePointAt(0).toString(16)
'41'
> 'ü'.codePointAt(0).toString(16)
'fc'
> 'π'.codePointAt(0).toString(16)
'3c0'
> '☺'.codePointAt(0).toString(16)
'1f642'

The hexadecimal numbers of the code points tell us that the first three characters reside
in plane 0 (within 16 bits), while the emoji resides in plane 1.

19.1.2 Encoding Unicode code points: UTF-32, UTF-16, UTF-8
The main ways of encoding code points are three Unicode Transformation Formats (UTFs):
UTF-32, UTF-16, UTF-8. The number at the end of each format indicates the size (in bits)
of its code units.

19.1.2.1 UTF-32 (Unicode Transformation Format 32)

UTF-32 uses 32 bits to store code units, resulting in one code unit per code point. This
format is the only one with fixed-length encoding; all others use a varying number of code
units to encode a single code point.

19.1 Code points vs. code units 153

19.1.2.2 UTF-16 (Unicode Transformation Format 16)
UTF-16 uses 16-bit code units. It encodes code points as follows:

• The BMP (first 16 bits of Unicode) is stored in single code units.
• Astral planes: The BMP comprises 0x10_000 code points. Given that Unicode has
a total of 0x110_000 code points, we still need to encode the remaining 0x100_000
code points (20 bits). The BMP has two ranges of unassigned code points that
provide the necessary storage:

– Most significant 10 bits (leading surrogate): 0xD800-0xDBFF
– Least significant 10 bits (trailing surrogate): 0xDC00-0xDFFF

In other words, the two hexadecimal digits at the end contribute 8 bits. But we can only
use those 8 bits if a BMP starts with one of the following 2-digit pairs:

• D8, D9, DA, DB
• DC, DD, DE, DF

Per surrogate, we have a choice between 4 pairs, which is where the remaining 2 bits
come from.
As a consequence, each UTF-16 code unit is always either a leading surrogate, a trailing
surrogate, or encodes a BMP code point.
These are two examples of UTF-16-encoded code points:

• Code point 0x03C0 (π) is in the BMP and can therefore be represented by a single
UTF-16 code unit: 0x03C0.

• Code point 0x1F642 (☺) is in an astral plane and represented by two code units:
0xD83D and 0xDE42.

19.1.2.3 UTF-8 (Unicode Transformation Format 8)
UTF-8 has 8-bit code units. It uses 1–4 code units to encode a code point:

Code points Code units
0000–007F 0bbbbbbb (7 bits)
0080–07FF 110bbbbb, 10bbbbbb (5+6 bits)
0800–FFFF 1110bbbb, 10bbbbbb, 10bbbbbb (4+6+6 bits)
10000–1FFFFF 11110bbb, 10bbbbbb, 10bbbbbb, 10bbbbbb (3+6+6+6 bits)

Notes:
• The bit prefix of each code unit tells us:

– Is it first in a series of code units? If yes, how many code units will follow?
– Is it second or later in a series of code units?

• The character mappings in the 0000–007F range are the same as ASCII, which leads
to a degree of backward compatibility with older software.

Three examples:

154 19 Unicode – a brief introduction (advanced)

Character Code point Code units
A 0x0041 01000001
π 0x03C0 11001111, 10000000
☺ 0x1F642 11110000, 10011111, 10011001, 10000010

19.2 Encodings used in web development: UTF-16 and
UTF-8

TheUnicode encoding formats that are used inweb development are: UTF-16 andUTF-8.

19.2.1 Source code internally: UTF-16
The ECMAScript specification internally represents source code as UTF-16.

19.2.2 Strings: UTF-16
The characters in JavaScript strings are based on UTF-16 code units:

> const smiley = '☺';
> smiley.length
2
> smiley === '\uD83D\uDE42' // code units
true

For more information on Unicode and strings, consult §20.6 “Atoms of text: Unicode
characters, JavaScript characters, grapheme clusters”.

19.2.3 Source code in files: UTF-8
HTML and JavaScript are almost always encoded as UTF-8 these days.

For example, this is how HTML files usually start now:

<!doctype html>
<html>
<head>

<meta charset="UTF-8">
···

For HTML modules loaded in web browsers, the standard encoding is also UTF-8.

19.3 Grapheme clusters – the real characters
The concept of a character becomes remarkably complex once you consider many of the
world’s writing systems.

On one hand, there are Unicode characters, as represented by code points.

https://html.spec.whatwg.org/multipage/webappapis.html#fetch-a-single-module-script

19.3 Grapheme clusters – the real characters 155

On the other hand, there are grapheme clusters. A grapheme cluster corresponds most
closely to a symbol displayed on screen or paper. It is defined as “a horizontally seg-
mentable unit of text”. Therefore, official Unicode documents also call it a user-perceived
character. One or more code point characters are needed to encode a grapheme cluster.
For example, the Devanagari kshi is encoded by 4 code points. We use spreading (...) to
split a string into an Array with code point characters (for details, consult §20.6.1 “Work-
ing with code points”):

Flag emojis are also grapheme clusters and composed of two code point characters – for
example, the flag of Japan:

More information on grapheme clusters
For more information, consult “Let’s Stop Ascribing Meaning to Code Points” by
Manish Goregaokar.

Quiz
See quiz app.

https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
https://manishearth.github.io/blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/

156 19 Unicode – a brief introduction (advanced)

Chapter 20

Strings

Contents
20.1 Plain string literals . 158

20.1.1 Escaping . 158
20.2 Accessing characters and code points 158

20.2.1 Accessing JavaScript characters 158
20.2.2 Accessing Unicode code point characters via for-of and

spreading . 158
20.3 String concatenation via + . 159
20.4 Converting to string . 159

20.4.1 Stringifying objects . 160
20.4.2 Customizing the stringification of objects 161
20.4.3 An alternate way of stringifying values 161

20.5 Comparing strings . 161
20.6 Atoms of text: Unicode characters, JavaScript characters, grapheme

clusters . 162
20.6.1 Working with code points . 162
20.6.2 Working with code units (char codes) 163
20.6.3 Caveat: grapheme clusters . 164

20.7 Quick reference: Strings . 164
20.7.1 Converting to string . 164
20.7.2 Numeric values of characters 164
20.7.3 String operators . 164
20.7.4 String.prototype: finding and matching 165
20.7.5 String.prototype: extracting 167
20.7.6 String.prototype: combining 168
20.7.7 String.prototype: transforming 168
20.7.8 Sources . 171

Strings are primitive values in JavaScript and immutable. That is, string-related opera-
tions always produce new strings and never change existing strings.

157

158 20 Strings

20.1 Plain string literals
Plain string literals are delimited by either single quotes or double quotes:

const str1 = 'abc';
const str2 = "abc";
assert.equal(str1, str2);

Single quotes are used more often because it makes it easier to mention HTML, where
double quotes are preferred.
The next chapter covers template literals, which give you:

• String interpolation
• Multiple lines
• Raw string literals (backslash has no special meaning)

20.1.1 Escaping
The backslash lets you create special characters:

• Unix line break: '\n'
• Windows line break: '\r\n'
• Tab: '\t'
• Backslash: '\\'

The backslash also lets you use the delimiter of a string literal inside that literal:
assert.equal(

'She said: "Let\'s go!"',
"She said: \"Let's go!\"");

20.2 Accessing characters and code points
20.2.1 Accessing JavaScript characters
JavaScript has no extra data type for characters – characters are always represented as
strings.

const str = 'abc';

// Reading a character at a given index
assert.equal(str[1], 'b');

// Counting the characters in a string:
assert.equal(str.length, 3);

20.2.2 Accessing Unicode code point characters via for-of and spread-
ing

Iterating over strings via for-of or spreading (...) visits Unicode code point characters.
Each code point character is encoded by 1–2 JavaScript characters. For more information,

20.3 String concatenation via + 159

see §20.6 “Atoms of text: Unicode characters, JavaScript characters, grapheme clusters”.

This is how you iterate over the code point characters of a string via for-of:

for (const ch of 'x☺y') {
console.log(ch);

}
// Output:
// 'x'
// '☺'
// 'y'

And this is how you convert a string into an Array of code point characters via spreading:

assert.deepEqual([...'x☺y'], ['x', '☺', 'y']);

20.3 String concatenation via +
If at least one operand is a string, the plus operator (+) converts any non-strings to strings
and concatenates the result:

assert.equal(3 + ' times ' + 4, '3 times 4');

The assignment operator += is useful if you want to assemble a string, piece by piece:

let str = ''; // must be `let`!
str += 'Say it';
str += ' one more';
str += ' time';

assert.equal(str, 'Say it one more time');

Concatenating via + is efficient
Using + to assemble strings is quite efficient because most JavaScript engines inter-
nally optimize it.

Exercise: Concatenating strings
exercises/strings/concat_string_array_test.mjs

20.4 Converting to string
These are three ways of converting a value x to a string:

• String(x)
• ''+x
• x.toString() (does not work for undefined and null)

160 20 Strings

Recommendation: use the descriptive and safe String().

Examples:

assert.equal(String(undefined), 'undefined');
assert.equal(String(null), 'null');

assert.equal(String(false), 'false');
assert.equal(String(true), 'true');

assert.equal(String(123.45), '123.45');

Pitfall for booleans: If you convert a boolean to a string via String(), you generally can’t
convert it back via Boolean():

> String(false)
'false'
> Boolean('false')
true

The only string for which Boolean() returns false, is the empty string.

20.4.1 Stringifying objects
Plain objects have a default string representation that is not very useful:

> String({a: 1})
'[object Object]'

Arrays have a better string representation, but it still hides much information:

> String(['a', 'b'])
'a,b'
> String(['a', ['b']])
'a,b'

> String([1, 2])
'1,2'
> String(['1', '2'])
'1,2'

> String([true])
'true'
> String(['true'])
'true'
> String(true)
'true'

Stringifying functions, returns their source code:

> String(function f() {return 4})
'function f() {return 4}'

20.5 Comparing strings 161

20.4.2 Customizing the stringification of objects
You can override the built-in way of stringifying objects by implementing the method
toString():

const obj = {
toString() {

return 'hello';
}

};

assert.equal(String(obj), 'hello');

20.4.3 An alternate way of stringifying values
The JSON data format is a text representation of JavaScript values. Therefore, JSON.
stringify() can also be used to convert values to strings:

> JSON.stringify({a: 1})
'{"a":1}'
> JSON.stringify(['a', ['b']])
'["a",["b"]]'

The caveat is that JSON only supports null, booleans, numbers, strings, Arrays, and
objects (which it always treats as if they were created by object literals).

Tip: The third parameter lets you switch on multiline output and specify how much to
indent – for example:

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2));

This statement produces the following output:

{
"first": "Jane",
"last": "Doe"

}

20.5 Comparing strings
Strings can be compared via the following operators:

< <= > >=

There is one important caveat to consider: These operators compare based on the numeric
values of JavaScript characters. That means that the order that JavaScript uses for strings
is different from the one used in dictionaries and phone books:

> 'A' < 'B' // ok
true
> 'a' < 'B' // not ok
false

162 20 Strings

> 'ä' < 'b' // not ok
false

Properly comparing text is beyond the scope of this book. It is supported via the ECMA-
Script Internationalization API (Intl).

20.6 Atoms of text: Unicode characters, JavaScript charac-
ters, grapheme clusters

Quick recap of §19 “Unicode – a brief introduction”:
• Unicode characters are represented by code points – numbers which have a range
of 21 bits.

• In JavaScript strings, Unicode is implemented via code units based on the encoding
format UTF-16. Each code unit is a 16-bit number. One to two of code units are
needed to encode a single code point.

– Therefore, each JavaScript character is represented by a code unit. In the
JavaScript standard library, code units are also called char codes. Which is
what they are: numbers for JavaScript characters.

• Grapheme clusters (user-perceived characters) are written symbols, as displayed on
screen or paper. One or more Unicode characters are needed to encode a single
grapheme cluster.

The following code demonstrates that a single Unicode character comprises one or two
JavaScript characters. We count the latter via .length:

// 3 Unicode characters, 3 JavaScript characters:
assert.equal('abc'.length, 3);

// 1 Unicode character, 2 JavaScript characters:
assert.equal('☺'.length, 2);

The following table summarizes the concepts we have just explored:

Entity Numeric representation Size Encoded via
Grapheme cluster 1+ code points
Unicode character Code point 21 bits 1–2 code units
JavaScript character UTF-16 code unit 16 bits –

20.6.1 Working with code points
Let’s explore JavaScript’s tools for working with code points.
A code point escape lets you specify a code point hexadecimally. It produces one or two
JavaScript characters.

> '\u{1F642}'
'☺'

String.fromCodePoint() converts a single code point to 1–2 JavaScript characters:

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Intl

20.6 Atoms of text: Unicode characters, JavaScript characters, grapheme clusters 163

> String.fromCodePoint(0x1F642)
'☺'

.codePointAt() converts 1–2 JavaScript characters to a single code point:

> '☺'.codePointAt(0).toString(16)
'1f642'

You can iterate over a string, which visits Unicode characters (not JavaScript characters).
Iteration is described later in this book. One way of iterating is via a for-of loop:

const str = '☺a';
assert.equal(str.length, 3);

for (const codePointChar of str) {
console.log(codePointChar);

}

// Output:
// '☺'
// 'a'

Spreading (...) into Array literals is also based on iteration and visits Unicode characters:

> [...'☺a']
['☺', 'a']

That makes it a good tool for counting Unicode characters:

> [...'☺a'].length
2
> '☺a'.length
3

20.6.2 Working with code units (char codes)
Indices and lengths of strings are based on JavaScript characters (as represented by UTF-
16 code units).

To specify a code unit hexadecimally, you can use a code unit escape:

> '\uD83D\uDE42'
'☺'

And you can use String.fromCharCode(). Char code is the standard library’s name for
code unit:

> String.fromCharCode(0xD83D) + String.fromCharCode(0xDE42)
'☺'

To get the char code of a character, use .charCodeAt():

> '☺'.charCodeAt(0).toString(16)
'd83d'

164 20 Strings

20.6.3 Caveat: grapheme clusters
When working with text that may be written in any human language, it’s best to split at
the boundaries of grapheme clusters, not at the boundaries of Unicode characters.
TC39 is working on Intl.Segmenter, a proposal for the ECMAScript Internationaliza-
tion API to support Unicode segmentation (along grapheme cluster boundaries, word
boundaries, sentence boundaries, etc.).
Until that proposal becomes a standard, you can use one of several libraries that are
available (do a web search for “JavaScript grapheme”).

20.7 Quick reference: Strings
Strings are immutable; none of the string methods ever modify their strings.

20.7.1 Converting to string
Tbl. 20.2 describes how various values are converted to strings.

Table 20.2: Converting values to strings.

x String(x)

undefined 'undefined'
null 'null'
Boolean value false → 'false', true → 'true'
Number value Example: 123 → '123'
String value x (input, unchanged)
An object Configurable via, e.g., toString()

20.7.2 Numeric values of characters
• Char code: represents a JavaScript character numerically. JavaScript’s name for

Unicode code unit.
– Size: 16 bits, unsigned
– Convert number to character: String.fromCharCode() [ES1]

– Convert character to number: string method .charCodeAt() [ES1]

• Code point: represents a Unicode character numerically.
– Size: 21 bits, unsigned (17 planes, 16 bits each)
– Convert number to character: String.fromCodePoint() [ES6]

– Convert character to number: string method .codePointAt() [ES6]

20.7.3 String operators
// Access characters via []
const str = 'abc';
assert.equal(str[1], 'b');

https://github.com/tc39/proposal-intl-segmenter

20.7 Quick reference: Strings 165

// Concatenate strings via +
assert.equal('a' + 'b' + 'c', 'abc');
assert.equal('take ' + 3 + ' oranges', 'take 3 oranges');

20.7.4 String.prototype: finding and matching
(String.prototype is where the methods of strings are stored.)

• .endsWith(searchString: string, endPos=this.length): boolean [ES6]

Returns true if the string would end with searchString if its length were endPos.
Returns false otherwise.

> 'foo.txt'.endsWith('.txt')
true
> 'abcde'.endsWith('cd', 4)
true

• .includes(searchString: string, startPos=0): boolean [ES6]

Returns true if the string contains the searchString and false otherwise. The
search starts at startPos.

> 'abc'.includes('b')
true
> 'abc'.includes('b', 2)
false

• .indexOf(searchString: string, minIndex=0): number [ES1]

Returns the lowest index at which searchString appears within the string or -1,
otherwise. Any returned index will beminIndex‘ or higher.

> 'abab'.indexOf('a')
0
> 'abab'.indexOf('a', 1)
2
> 'abab'.indexOf('c')
-1

• .lastIndexOf(searchString: string, maxIndex=Infinity): number [ES1]

Returns the highest index at which searchString appears within the string or -1,
otherwise. Any returned index will bemaxIndex‘ or lower.

> 'abab'.lastIndexOf('ab', 2)
2
> 'abab'.lastIndexOf('ab', 1)
0
> 'abab'.lastIndexOf('ab')
2

• [1 of 2] .match(regExp: string | RegExp): RegExpMatchArray | null [ES3]

166 20 Strings

If regExp is a regular expression with flag /g not set, then .match() returns the
first match for regExpwithin the string. Or null if there is no match. If regExp is a
string, it is used to create a regular expression (think parameter of new RegExp())
before performing the previously mentioned steps.
The result has the following type:

interface RegExpMatchArray extends Array<string> {
index: number;
input: string;
groups: undefined | {

[key: string]: string
};

}

Numbered capture groups become Array indices (which is why this type extends
Array). Named capture groups (ES2018) become properties of .groups. In this
mode, .match() works like RegExp.prototype.exec().
Examples:

> 'ababb'.match(/a(b+)/)
{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: undefined }
> 'ababb'.match(/a(?<foo>b+)/)
{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: { foo: 'b' } }
> 'abab'.match(/x/)
null

• [2 of 2] .match(regExp: RegExp): string[] | null [ES3]

If flag /g of regExp is set, .match() returns either anArraywith all matches or null
if there was no match.

> 'ababb'.match(/a(b+)/g)
['ab', 'abb']
> 'ababb'.match(/a(?<foo>b+)/g)
['ab', 'abb']
> 'abab'.match(/x/g)
null

• .search(regExp: string | RegExp): number [ES3]

Returns the index at which regExp occurs within the string. If regExp is a string, it
is used to create a regular expression (think parameter of new RegExp()).

> 'a2b'.search(/[0-9]/)
1
> 'a2b'.search('[0-9]')
1

• .startsWith(searchString: string, startPos=0): boolean [ES6]

Returns true if searchString occurs in the string at index startPos. Returns
false otherwise.

20.7 Quick reference: Strings 167

> '.gitignore'.startsWith('.')
true
> 'abcde'.startsWith('bc', 1)
true

20.7.5 String.prototype: extracting
• .slice(start=0, end=this.length): string [ES3]

Returns the substring of the string that starts at (including) index start and ends
at (excluding) index end. If an index is negative, it is added to .length before it is
used (-1 becomes this.length-1, etc.).

> 'abc'.slice(1, 3)
'bc'
> 'abc'.slice(1)
'bc'
> 'abc'.slice(-2)
'bc'

• .split(separator: string | RegExp, limit?: number): string[] [ES3]

Splits the string into an Array of substrings – the strings that occur between the
separators. The separator can be a string:

> 'a | b | c'.split('|')
['a ', ' b ', ' c']

It can also be a regular expression:

> 'a : b : c'.split(/ *: */)
['a', 'b', 'c']
> 'a : b : c'.split(/(*):(*)/)
['a', ' ', ' ', 'b', ' ', ' ', 'c']

The last invocation demonstrates that captures made by groups in the regular ex-
pression become elements of the returned Array.

Warning: .split('') splits a string into JavaScript characters. That doesn’t
work well when dealing with astral Unicode characters (which are encoded as
two JavaScript characters). For example, emojis are astral:

> '☺X☺'.split('')
['\uD83D', '\uDE42', 'X', '\uD83D', '\uDE42']

Instead, it is better to use spreading:

> [...'☺X☺']
['☺', 'X', '☺']

• .substring(start: number, end=this.length): string [ES1]

Use .slice() instead of this method. .substring() wasn’t implemented consis-
tently in older engines and doesn’t support negative indices.

168 20 Strings

20.7.6 String.prototype: combining
• .concat(...strings: string[]): string [ES3]

Returns the concatenation of the string and strings. 'a'.concat('b') is equiva-
lent to 'a'+'b'. The latter is much more popular.

> 'ab'.concat('cd', 'ef', 'gh')
'abcdefgh'

• .padEnd(len: number, fillString=' '): string [ES2017]

Appends (fragments of) fillString to the string until it has the desired length len.
If it already has or exceeds len, then it is returned without any changes.

> '#'.padEnd(2)
'# '
> 'abc'.padEnd(2)
'abc'
> '#'.padEnd(5, 'abc')
'#abca'

• .padStart(len: number, fillString=' '): string [ES2017]

Prepends (fragments of) fillString to the string until it has the desired length
len. If it already has or exceeds len, then it is returned without any changes.

> '#'.padStart(2)
' #'
> 'abc'.padStart(2)
'abc'
> '#'.padStart(5, 'abc')
'abca#'

• .repeat(count=0): string [ES6]

Returns the string, concatenated count times.
> '*'.repeat()
''
> '*'.repeat(3)
'***'

20.7.7 String.prototype: transforming
• .normalize(form: 'NFC'|'NFD'|'NFKC'|'NFKD' = 'NFC'): string [ES6]

Normalizes the string according to the Unicode Normalization Forms.
• [1 of 2] .replace(searchValue: string | RegExp, replaceValue: string):

string [ES3]

Replace matches of searchValue with replaceValue. If searchValue is a string,
only the first verbatim occurrence is replaced. If searchValue is a regular expres-
sion without flag /g, only the first match is replaced. If searchValue is a regular
expression with /g then all matches are replaced.

https://unicode.org/reports/tr15/

20.7 Quick reference: Strings 169

> 'x.x.'.replace('.', '#')
'x#x.'
> 'x.x.'.replace(/./, '#')
'#.x.'
> 'x.x.'.replace(/./g, '#')
'####'

Special characters in replaceValue are:
– $$: becomes $
– $n: becomes the capture of numbered group n (alas, $0 stands for the string

'$0', it does not refer to the complete match)
– $&: becomes the complete match
– $`: becomes everything before the match
– $': becomes everything after the match

Examples:
> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$2|')
'a |04| b'
> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$&|')
'a |2020-04| b'
> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$`|')
'a |a | b'

Named capture groups (ES2018) are supported, too:
– $<name> becomes the capture of named group name

Example:
assert.equal(

'a 2020-04 b'.replace(
/(?<year>[0-9]{4})-(?<month>[0-9]{2})/, '|$<month>|'),

'a |04| b');

• [2 of 2] .replace(searchValue: string | RegExp, replacer: (...args: any[])
=> string): string [ES3]

If the second parameter is a function, occurrences are replaced with the strings it
returns. Its parameters args are:

– matched: string. The complete match
– g1: string|undefined. The capture of numbered group 1
– g2: string|undefined. The capture of numbered group 2
– (Etc.)
– offset: number. Where was the match found in the input string?
– input: string. The whole input string
const regexp = /([0-9]{4})-([0-9]{2})/;
const replacer = (all, year, month) => '|' + all + '|';
assert.equal(

'a 2020-04 b'.replace(regexp, replacer),
'a |2020-04| b');

170 20 Strings

Named capture groups (ES2018) are supported, too. If there are any, an argument
is added at the end with an object whose properties contain the captures:

const regexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})/;
const replacer = (...args) => {

const groups=args.pop();
return '|' + groups.month + '|';

};
assert.equal(

'a 2020-04 b'.replace(regexp, replacer),
'a |04| b');

• .toUpperCase(): string [ES1]

Returns a copy of the string in which all lowercase alphabetic characters are con-
verted to uppercase. How well that works for various alphabets, depends on the
JavaScript engine.

> '-a2b-'.toUpperCase()
'-A2B-'
> 'αβγ'.toUpperCase()
'ΑΒΓ'

• .toLowerCase(): string [ES1]

Returns a copy of the string in which all uppercase alphabetic characters are con-
verted to lowercase. How well that works for various alphabets, depends on the
JavaScript engine.

> '-A2B-'.toLowerCase()
'-a2b-'
> 'ΑΒΓ'.toLowerCase()
'αβγ'

• .trim(): string [ES5]

Returns a copy of the string in which all leading and trailing whitespace (spaces,
tabs, line terminators, etc.) is gone.

> '\r\n#\t '.trim()
'#'
> ' abc '.trim()
'abc'

• .trimEnd(): string [ES2019]

Similar to .trim() but only the end of the string is trimmed:

> ' abc '.trimEnd()
' abc'

• .trimStart(): string [ES2019]

Similar to .trim() but only the beginning of the string is trimmed:

20.7 Quick reference: Strings 171

> ' abc '.trimStart()
'abc '

20.7.8 Sources
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

Exercise: Using string methods
exercises/strings/remove_extension_test.mjs

Quiz
See quiz app.

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

172 20 Strings

Chapter 21

Using template literals and
tagged templates

Contents
21.1 Disambiguation: “template” . 173
21.2 Template literals . 174
21.3 Tagged templates . 175

21.3.1 Cooked vs. raw template strings (advanced) 175
21.3.2 Tag function library: lit-html 176
21.3.3 Tag function library: re-template-tag 176
21.3.4 Tag function library: graphql-tag 177

21.4 Raw string literals . 177
21.5 (Advanced) . 177
21.6 Multiline template literals and indentation 178

21.6.1 Fix: template tag for dedenting 178
21.6.2 Fix: .trim() . 179

21.7 Simple templating via template literals 179
21.7.1 A more complex example . 179
21.7.2 Simple HTML-escaping . 181

Before we dig into the two features template literal and tagged template, let’s first examine
the multiple meanings of the term template.

21.1 Disambiguation: “template”
The following three things are significantly different despite all having template in their
names and despite all of them looking similar:

• A text template is a function from data to text. It is frequently used in web devel-
opment and often defined via text files. For example, the following text defines a
template for the library Handlebars:

173

https://handlebarsjs.com

174 21 Using template literals and tagged templates

<div class="entry">
<h1>{{title}}</h1>
<div class="body">

{{body}}
</div>

</div>

This template has two blanks to be filled in: title and body. It is used like this:

// First step: retrieve the template text, e.g. from a text file.
const tmplFunc = Handlebars.compile(TMPL_TEXT); // compile string
const data = {title: 'My page', body: 'Welcome to my page!'};
const html = tmplFunc(data);

• A template literal is similar to a string literal, but has additional features – for exam-
ple, interpolation. It is delimited by backticks:

const num = 5;
assert.equal(`Count: ${num}!`, 'Count: 5!');

• Syntactically, a tagged template is a template literal that follows a function (or rather,
an expression that evaluates to a function). That leads to the function being called.
Its arguments are derived from the contents of the template literal.

const getArgs = (...args) => args;
assert.deepEqual(

getArgs`Count: ${5}!`,
[['Count: ', '!'], 5]);

Note that getArgs() receives both the text of the literal and the data interpolated
via ${}.

21.2 Template literals
A template literal has two new features compared to a normal string literal.

First, it supports string interpolation: if you put a dynamically computed value inside a
${}, it is converted to a string and inserted into the string returned by the literal.

const MAX = 100;
function doSomeWork(x) {

if (x > MAX) {
throw new Error(`At most ${MAX} allowed: ${x}!`);

}
// ···

}
assert.throws(

() => doSomeWork(101),
{message: 'At most 100 allowed: 101!'});

Second, template literals can span multiple lines:

21.3 Tagged templates 175

const str = `this is
a text with
multiple lines`;

Template literals always produce strings.

21.3 Tagged templates
The expression in line A is a tagged template. It is equivalent to invoking tagFunc() with
the arguments listed in the Array in line B.

function tagFunc(...args) {
return args;

}

const setting = 'dark mode';
const value = true;

assert.deepEqual(
tagFunc`Setting ${setting} is ${value}!`, // (A)
[['Setting ', ' is ', '!'], 'dark mode', true] // (B)

);

The function tagFunc before the first backtick is called a tag function. Its arguments are:
• Template strings (first argument): an Array with the text fragments surrounding the
interpolations ${}.

– In the example: ['Setting ', ' is ', '!']
• Substitutions (remaining arguments): the interpolated values.

– In the example: 'dark mode' and true

The static (fixed) parts of the literal (the template strings) are kept separate from the dy-
namic parts (the substitutions).
A tag function can return arbitrary values.

21.3.1 Cooked vs. raw template strings (advanced)
So far, we have only seen the cooked interpretation of template strings. But tag functions
actually get two interpretations:

• A cooked interpretation where backslashes have special meaning. For example, \t
produces a tab character. This interpretation of the template strings is stored as an
Array in the first argument.

• A raw interpretation where backslashes do not have special meaning. For example,
\t produces two characters – a backslash and a t. This interpretation of the tem-
plate strings is stored in property .raw of the first argument (an Array).

The following tag function cookedRaw uses both interpretations:
function cookedRaw(templateStrings, ...substitutions) {

return {

176 21 Using template literals and tagged templates

cooked: [...templateStrings], // copy just the Array elements
raw: templateStrings.raw,
substitutions,

};
}
assert.deepEqual(

cookedRaw`\tab${'subst'}\newline\\`,
{

cooked: ['\tab', '\newline\\'],
raw: ['\\tab', '\\newline\\\\'],
substitutions: ['subst'],

});

The raw interpretation enables raw string literals via String.raw (described later) and
similar applications.
Tagged templates are great for supporting small embedded languages (so-called domain-
specific languages). We’ll continue with a few examples.

21.3.2 Tag function library: lit-html
lit-html is a templating library that is based on tagged templates and used by the frontend
framework Polymer:

import {html, render} from 'lit-html';

const template = (items) => html`

${
repeat(items,
(item) => item.id,
(item, index) => html`${index}. ${item.name}`

)
}

`;

repeat() is a custom function for looping. Its 2nd parameter produces unique keys for
the values returned by the 3rd parameter. Note the nested tagged template used by that
parameter.

21.3.3 Tag function library: re-template-tag
re-template-tag is a simple library for composing regular expressions. Templates tagged
with re produce regular expressions. Themain benefit is that you can interpolate regular
expressions and plain text via ${} (line A):

const RE_YEAR = re`(?<year>[0-9]{4})`;
const RE_MONTH = re`(?<month>[0-9]{2})`;
const RE_DAY = re`(?<day>[0-9]{2})`;
const RE_DATE = re`/${RE_YEAR}-${RE_MONTH}-${RE_DAY}/u`; // (A)

https://github.com/Polymer/lit-html
https://www.polymer-project.org/
https://www.polymer-project.org/
https://github.com/rauschma/re-template-tag

21.4 Raw string literals 177

const match = RE_DATE.exec('2017-01-27');
assert.equal(match.groups.year, '2017');

21.3.4 Tag function library: graphql-tag
The library graphql-tag lets you create GraphQL queries via tagged templates:

import gql from 'graphql-tag';

const query = gql`
{

user(id: 5) {
firstName
lastName

}
}
`;

Additionally, there are plugins for pre-compiling such queries in Babel, TypeScript, etc.

21.4 Raw string literals
Raw string literals are implemented via the tag function String.raw. They are string
literals where backslashes don’t do anything special (such as escaping characters, etc.):

assert.equal(String.raw`\back`, '\\back');

This helps whenever data contains backslashes – for example, strings with regular ex-
pressions:

const regex1 = /^\./;
const regex2 = new RegExp('^\\.');
const regex3 = new RegExp(String.raw`^\.`);

All three regular expressions are equivalent. With a normal string literal, you have to
write the backslash twice, to escape it for that literal. With a raw string literal, you don’t
have to do that.

Raw string literals are also useful for specifying Windows filename paths:

const WIN_PATH = String.raw`C:\foo\bar`;
assert.equal(WIN_PATH, 'C:\\foo\\bar');

21.5 (Advanced)
All remaining sections are advanced

https://github.com/apollographql/graphql-tag

178 21 Using template literals and tagged templates

21.6 Multiline template literals and indentation
If you put multiline text in template literals, two goals are in conflict: On one hand, the
template literal should be indented to fit inside the source code. On the other hand, the
lines of its content should start in the leftmost column.

For example:

function div(text) {
return `

<div>
${text}

</div>
`;

}
console.log('Output:');
console.log(

div('Hello!')
// Replace spaces with mid-dots:
.replace(/ /g, '·')
// Replace \n with #\n:
.replace(/\n/g, '#\n')

);

Due to the indentation, the template literal fits well into the source code. Alas, the output
is also indented. And we don’t want the return at the beginning and the return plus two
spaces at the end.

Output:
#
····<div>#
······Hello!#
····</div>#
··

There are two ways to fix this: via a tagged template or by trimming the result of the
template literal.

21.6.1 Fix: template tag for dedenting
The first fix is to use a custom template tag that removes the unwantedwhitespace. It uses
the first line after the initial line break to determine in which column the text starts and
shortens the indentation everywhere. It also removes the line break at the very beginning
and the indentation at the very end. One such template tag is dedent by Desmond Brand:

import dedent from 'dedent';
function divDedented(text) {

return dedent`
<div>

${text}
</div>

https://github.com/dmnd/dedent

21.7 Simple templating via template literals 179

`.replace(/\n/g, '#\n');
}
console.log('Output:');
console.log(divDedented('Hello!'));

This time, the output is not indented:
Output:
<div>#

Hello!#
</div>

21.6.2 Fix: .trim()
The second fix is quicker, but also dirtier:

function divDedented(text) {
return `

<div>
${text}

</div>
`.trim().replace(/\n/g, '#\n');

}
console.log('Output:');
console.log(divDedented('Hello!'));

The string method .trim() removes the superfluous whitespace at the beginning and at
the end, but the content itself must start in the leftmost column. The advantage of this
solution is that you don’t need a custom tag function. The downside is that it looks ugly.
The output is the same as with dedent:

Output:
<div>#

Hello!#
</div>

21.7 Simple templating via template literals
While template literals look like text templates, it is not immediately obvious how to use
them for (text) templating: A text template gets its data from an object, while a template
literal gets its data from variables. The solution is to use a template literal in the body of
a function whose parameter receives the templating data – for example:

const tmpl = (data) => `Hello ${data.name}!`;
assert.equal(tmpl({name: 'Jane'}), 'Hello Jane!');

21.7.1 A more complex example
As a more complex example, we’d like to take an Array of addresses and produce an
HTML table. This is the Array:

180 21 Using template literals and tagged templates

const addresses = [
{ first: '<Jane>', last: 'Bond' },
{ first: 'Lars', last: '<Croft>' },

];

The function tmpl() that produces the HTML table looks as follows:

1 const tmpl = (addrs) => `
2 <table>
3 ${addrs.map(
4 (addr) => `
5 <tr>
6 <td>${escapeHtml(addr.first)}</td>
7 <td>${escapeHtml(addr.last)}</td>
8 </tr>
9 `.trim()
10).join('')}
11 </table>
12 `.trim();

This code contains two templating functions:

• The first one (line 1) takes addrs, an Array with addresses, and returns a string
with a table.

• The second one (line 4) takes addr, an object containing an address, and returns a
string with a table row. Note the .trim() at the end, which removes unnecessary
whitespace.

The first templating function produces its result by wrapping a table element around an
Array that it joins into a string (line 10). That Array is produced by mapping the second
templating function to each element of addrs (line 3). It therefore contains strings with
table rows.

The helper function escapeHtml() is used to escape special HTML characters (line 6 and
line 7). Its implementation is shown in the next subsection.

Let us call tmpl() with the addresses and log the result:

console.log(tmpl(addresses));

The output is:

<table>
<tr>

<td><Jane></td>
<td>Bond</td>

</tr><tr>
<td>Lars</td>
<td><Croft></td>

</tr>
</table>

21.7 Simple templating via template literals 181

21.7.2 Simple HTML-escaping
The following function escapes plain text so that it is displayed verbatim in HTML:

function escapeHtml(str) {
return str

.replace(/&/g, '&') // first!

.replace(/>/g, '>')

.replace(/</g, '<')

.replace(/"/g, '"')

.replace(/'/g, ''')

.replace(/`/g, '`')
;

}
assert.equal(

escapeHtml('Rock & Roll'), 'Rock & Roll');
assert.equal(

escapeHtml('<blank>'), '<blank>');

Exercise: HTML templating
Exercise with bonus challenge: exercises/template-literals/templating_
test.mjs

Quiz
See quiz app.

182 21 Using template literals and tagged templates

Chapter 22

Symbols

Contents
22.1 Use cases for symbols . 184

22.1.1 Symbols: values for constants 184
22.1.2 Symbols: unique property keys 185

22.2 Publicly known symbols . 186
22.3 Converting symbols . 186

Symbols are primitive values that are created via the factory function Symbol():

const mySymbol = Symbol('mySymbol');

The parameter is optional and provides a description, which is mainly useful for debug-
ging.

On one hand, symbols are like objects in that each value created by Symbol() is unique
and not compared by value:

> Symbol() === Symbol()
false

On the other hand, they also behave like primitive values. They have to be categorized
via typeof:

const sym = Symbol();
assert.equal(typeof sym, 'symbol');

And they can be property keys in objects:

const obj = {
[sym]: 123,

};

183

184 22 Symbols

22.1 Use cases for symbols
The main use cases for symbols, are:

• Values for constants
• Unique property keys

22.1.1 Symbols: values for constants
Let’s assume you want to create constants representing the colors red, orange, yellow,
green, blue, and violet. One simple way of doing so would be to use strings:

const COLOR_BLUE = 'Blue';

On the plus side, logging that constant produces helpful output. On theminus side, there
is a risk of mistaking an unrelated value for a color because two strings with the same
content are considered equal:

const MOOD_BLUE = 'Blue';
assert.equal(COLOR_BLUE, MOOD_BLUE);

We can fix that problem via symbols:
const COLOR_BLUE = Symbol('Blue');
const MOOD_BLUE = Symbol('Blue');

assert.notEqual(COLOR_BLUE, MOOD_BLUE);

Let’s use symbol-valued constants to implement a function:
const COLOR_RED = Symbol('Red');
const COLOR_ORANGE = Symbol('Orange');
const COLOR_YELLOW = Symbol('Yellow');
const COLOR_GREEN = Symbol('Green');
const COLOR_BLUE = Symbol('Blue');
const COLOR_VIOLET = Symbol('Violet');

function getComplement(color) {
switch (color) {

case COLOR_RED:
return COLOR_GREEN;

case COLOR_ORANGE:
return COLOR_BLUE;

case COLOR_YELLOW:
return COLOR_VIOLET;

case COLOR_GREEN:
return COLOR_RED;

case COLOR_BLUE:
return COLOR_ORANGE;

case COLOR_VIOLET:
return COLOR_YELLOW;

default:

22.1 Use cases for symbols 185

throw new Exception('Unknown color: '+color);
}

}
assert.equal(getComplement(COLOR_YELLOW), COLOR_VIOLET);

22.1.2 Symbols: unique property keys
The keys of properties (fields) in objects are used at two levels:

• The program operates at a base level. The keys at that level reflect the problem that
the program solves.

• Libraries and ECMAScript operate at a meta-level. The keys at that level are used
by services operating on base-level data and code. One such key is 'toString'.

The following code demonstrates the difference:
const pt = {

x: 7,
y: 4,
toString() {

return `(${this.x}, ${this.y})`;
},

};
assert.equal(String(pt), '(7, 4)');

Properties .x and .y exist at the base level. They hold the coordinates of the point
represented by pt and are used to solve a problem – computing with points. Method
.toString() exists at a meta-level. It is used by JavaScript to convert this object to a
string.
Meta-level properties must never interfere with base-level properties. That is, their keys
must never overlap. That is difficult when both language and libraries contribute to
the meta-level. For example, it is now impossible to give new meta-level methods sim-
ple names, such as toString because they might clash with existing base-level names.
Python’s solution to this problem is to prefix and suffix special names with two under-
scores: __init__, __iter__, __hash__, etc. However, even with this solution, libraries
can’t have their ownmeta-level properties because those might be in conflict with future
language properties.
Symbols, used as property keys, help us here: Each symbol is unique and a symbol key
never clashes with any other string or symbol key.

22.1.2.1 Example: a library with a meta-level method
As an example, let’s assume we are writing a library that treats objects differently if they
implement a special method. This is what defining a property key for such amethod and
implementing it for an object would look like:

const specialMethod = Symbol('specialMethod');
const obj = {

_id: 'kf12oi',

186 22 Symbols

[specialMethod]() { // (A)
return this._id;

}
};
assert.equal(obj[specialMethod](), 'kf12oi');

The square brackets in line A enable us to specify that the method must have the key
specialMethod. More details are explained in §28.5.2 “Computed property keys”.

22.2 Publicly known symbols
Symbols that play special roles within ECMAScript are called publicly known symbols. Ex-
amples include:

• Symbol.iterator: makes an object iterable. It’s the key of a method that returns an
iterator. For more information on this topic, see §30 “Synchronous iteration”.

• Symbol.hasInstance: customizes how instanceofworks. If an object implements
a method with that key, it can be used at the right-hand side of that operator. For
example:

const PrimitiveNull = {
[Symbol.hasInstance](x) {

return x === null;
}

};
assert.equal(null instanceof PrimitiveNull, true);

• Symbol.toStringTag: influences the default .toString()method.
> String({})
'[object Object]'
> String({ [Symbol.toStringTag]: 'is no money' })
'[object is no money]'

Note: It’s usually better to override .toString().

Exercises: Publicly known symbols
• Symbol.toStringTag: exercises/symbols/to_string_tag_test.mjs
• Symbol.hasInstance: exercises/symbols/has_instance_test.mjs

22.3 Converting symbols
What happens if we convert a symbol sym to another primitive type? Tbl. 22.1 has the
answers.

22.3 Converting symbols 187

Table 22.1: The results of converting symbols to other primitive types.

Convert to Explicit conversion Coercion (implicit conv.)
boolean Boolean(sym) → OK !sym → OK
number Number(sym) → TypeError sym*2 → TypeError
string String(sym) → OK ''+sym → TypeError

sym.toString() → OK `${sym}` → TypeError

One key pitfall with symbols is how often exceptions are thrown when converting them
to something else. What is the thinking behind that? First, conversion to number never
makes sense and should be warned about. Second, converting a symbol to a string is
indeed useful for diagnostic output. But it also makes sense to warn about accidentally
turning a symbol into a string (which is a different kind of property key):

const obj = {};
const sym = Symbol();
assert.throws(

() => { obj['__'+sym+'__'] = true },
{ message: 'Cannot convert a Symbol value to a string' });

The downside is that the exceptions make working with symbols more complicated. You
have to explicitly convert symbols when assembling strings via the plus operator:

> const mySymbol = Symbol('mySymbol');
> 'Symbol I used: ' + mySymbol
TypeError: Cannot convert a Symbol value to a string
> 'Symbol I used: ' + String(mySymbol)
'Symbol I used: Symbol(mySymbol)'

Quiz
See quiz app.

188 22 Symbols

Part V

Control flow and data flow

189

Chapter 23

Control flow statements

Contents
23.1 Conditions of control flow statements 192
23.2 Controlling loops: break and continue 192

23.2.1 break . 192
23.2.2 break plus label: leaving any labeled statement 193
23.2.3 continue . 193

23.3 if statements . 194
23.3.1 The syntax of if statements 194

23.4 switch statements . 195
23.4.1 A first example of a switch statement 195
23.4.2 Don’t forget to return or break! 196
23.4.3 Empty case clauses . 196
23.4.4 Checking for illegal values via a default clause 197

23.5 while loops . 197
23.5.1 Examples of while loops . 198

23.6 do-while loops . 198
23.7 for loops . 198

23.7.1 Examples of for loops . 199
23.8 for-of loops . 199

23.8.1 const: for-of vs. for . 200
23.8.2 Iterating over iterables . 200
23.8.3 Iterating over [index, element] pairs of Arrays 200

23.9 for-await-of loops . 201
23.10for-in loops (avoid) . 201

This chapter covers the following control flow statements:
• if statement (ES1)
• switch statement (ES3)
• while loop (ES1)

191

192 23 Control flow statements

• do-while loop (ES3)
• for loop (ES1)
• for-of loop (ES6)
• for-await-of loop (ES2018)
• for-in loop (ES1)

Before we get to the actual control flow statements, let’s take a look at two operators for
controlling loops.

23.1 Conditions of control flow statements
if, while, and do-while have conditions that are, in principle, boolean. However, a
condition only has to be truthy (true if coerced to boolean) in order to be accepted. In
other words, the following two control flow statements are equivalent:

if (value) {}
if (Boolean(value) === true) {}

This is a list of all falsy values:

• undefined, null
• false
• 0, NaN
• ''

All other values are truthy. For more information, see §16.2 “Falsy and truthy values”.

23.2 Controlling loops: break and continue

The two operators break and continue can be used to control loops and other statements
while you are inside them.

23.2.1 break

There are two versions of break: one with an operand and one without an operand. The
latter version works inside the following statements: while, do-while, for, for-of, for-
await-of, for-in and switch. It immediately leaves the current statement:

for (const x of ['a', 'b', 'c']) {
console.log(x);
if (x === 'b') break;
console.log('---')

}

// Output:
// 'a'
// '---'
// 'b'

23.2 Controlling loops: break and continue 193

23.2.2 break plus label: leaving any labeled statement
break with an operand works everywhere. Its operand is a label. Labels can be put in
front of any statement, including blocks. break foo leaves the statement whose label is
foo:

foo: { // label
if (condition) break foo; // labeled break
// ···

}

In the following example, we use break with a label to leave a loop differently when we
succeeded (line A). Then we skip what comes directly after the loop, which is where we
end up if we failed.

function findSuffix(stringArray, suffix) {
let result;
search_block: {

for (const str of stringArray) {
if (str.endsWith(suffix)) {
// Success:
result = str;
break search_block; // (A)

}
} // for
// Failure:
result = '(Untitled)';

} // search_block

return { suffix, result };
// Same as: {suffix: suffix, result: result}

}
assert.deepEqual(

findSuffix(['foo.txt', 'bar.html'], '.html'),
{ suffix: '.html', result: 'bar.html' }

);
assert.deepEqual(

findSuffix(['foo.txt', 'bar.html'], '.mjs'),
{ suffix: '.mjs', result: '(Untitled)' }

);

23.2.3 continue

continue only works inside while, do-while, for, for-of, for-await-of, and for-in.
It immediately leaves the current loop iteration and continues with the next one – for
example:

const lines = [
'Normal line',
'# Comment',

194 23 Control flow statements

'Another normal line',
];
for (const line of lines) {

if (line.startsWith('#')) continue;
console.log(line);

}
// Output:
// 'Normal line'
// 'Another normal line'

23.3 if statements
These are two simple if statements: one with just a “then” branch and one with both a
“then” branch and an “else” branch:

if (cond) {
// then branch

}

if (cond) {
// then branch

} else {
// else branch

}

Instead of the block, else can also be followed by another if statement:

if (cond1) {
// ···

} else if (cond2) {
// ···

}

if (cond1) {
// ···

} else if (cond2) {
// ···

} else {
// ···

}

You can continue this chain with more else ifs.

23.3.1 The syntax of if statements
The general syntax of if statements is:

if (cond) «then_statement»
else «else_statement»

23.4 switch statements 195

So far, the then_statement has always been a block, but we can use any statement. That
statement must be terminated with a semicolon:

if (true) console.log('Yes'); else console.log('No');

That means that else if is not its own construct; it’s simply an if statement whose
else_statement is another if statement.

23.4 switch statements
A switch statement looks as follows:

switch («switch_expression») {
«switch_body»

}

The body of switch consists of zero or more case clauses:
case «case_expression»:

«statements»

And, optionally, a default clause:
default:

«statements»

A switch is executed as follows:
• It evaluates the switch expression.
• It jumps to the first case clause whose expression has the same result as the switch
expression.

• Otherwise, if there is no such clause, it jumps to the default clause.
• Otherwise, if there is no default clause, it does nothing.

23.4.1 A first example of a switch statement
Let’s look at an example: The following function converts a number from 1–7 to the name
of a weekday.

function dayOfTheWeek(num) {
switch (num) {

case 1:
return 'Monday';

case 2:
return 'Tuesday';

case 3:
return 'Wednesday';

case 4:
return 'Thursday';

case 5:
return 'Friday';

case 6:

196 23 Control flow statements

return 'Saturday';
case 7:

return 'Sunday';
}

}
assert.equal(dayOfTheWeek(5), 'Friday');

23.4.2 Don’t forget to return or break!
At the end of a case clause, execution continues with the next case clause, unless you
return or break – for example:

function englishToFrench(english) {
let french;
switch (english) {

case 'hello':
french = 'bonjour';

case 'goodbye':
french = 'au revoir';

}
return french;

}
// The result should be 'bonjour'!
assert.equal(englishToFrench('hello'), 'au revoir');

That is, our implementation of dayOfTheWeek() only worked because we used return.
We can fix englishToFrench() by using break:

function englishToFrench(english) {
let french;
switch (english) {

case 'hello':
french = 'bonjour';
break;

case 'goodbye':
french = 'au revoir';
break;

}
return french;

}
assert.equal(englishToFrench('hello'), 'bonjour'); // ok

23.4.3 Empty case clauses
The statements of a case clause can be omitted, which effectively gives us multiple case
expressions per case clause:

function isWeekDay(name) {
switch (name) {

case 'Monday':

23.5 while loops 197

case 'Tuesday':
case 'Wednesday':
case 'Thursday':
case 'Friday':

return true;
case 'Saturday':
case 'Sunday':

return false;
}

}
assert.equal(isWeekDay('Wednesday'), true);
assert.equal(isWeekDay('Sunday'), false);

23.4.4 Checking for illegal values via a default clause
A default clause is jumped to if the switch expression has no other match. That makes
it useful for error checking:

function isWeekDay(name) {
switch (name) {

case 'Monday':
case 'Tuesday':
case 'Wednesday':
case 'Thursday':
case 'Friday':

return true;
case 'Saturday':
case 'Sunday':

return false;
default:

throw new Error('Illegal value: '+name);
}

}
assert.throws(

() => isWeekDay('January'),
{message: 'Illegal value: January'});

Exercises: switch
• exercises/control-flow/number_to_month_test.mjs

• Bonus: exercises/control-flow/is_object_via_switch_test.mjs

23.5 while loops
A while loop has the following syntax:

198 23 Control flow statements

while («condition») {
«statements»

}

Before each loop iteration, while evaluates condition:
• If the result is falsy, the loop is finished.
• If the result is truthy, the while body is executed one more time.

23.5.1 Examples of while loops
The following code uses a while loop. In each loop iteration, it removes the first element
of arr via .shift() and logs it.

const arr = ['a', 'b', 'c'];
while (arr.length > 0) {

const elem = arr.shift(); // remove first element
console.log(elem);

}
// Output:
// 'a'
// 'b'
// 'c'

If the condition always evaluates to true, then while is an infinite loop:
while (true) {

if (Math.random() === 0) break;
}

23.6 do-while loops
The do-while loop works much like while, but it checks its condition after each loop
iteration, not before.

let input;
do {

input = prompt('Enter text:');
console.log(input);

} while (input !== ':q');

prompt() is a global function that is available in web browsers. It prompts the user to
input text and returns it.

23.7 for loops
A for loop has the following syntax:

for («initialization»; «condition»; «post_iteration») {
«statements»

}

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt

23.8 for-of loops 199

The first line is the head of the loop and controls how often the body (the remainder of the
loop) is executed. It has three parts and each of them is optional:

• initialization: sets up variables, etc. for the loop. Variables declared here via
let or const only exist inside the loop.

• condition: This condition is checked before each loop iteration. If it is falsy, the
loop stops.

• post_iteration: This code is executed after each loop iteration.
A for loop is therefore roughly equivalent to the following while loop:

«initialization»
while («condition») {

«statements»
«post_iteration»

}

23.7.1 Examples of for loops
As an example, this is how to count from zero to two via a for loop:

for (let i=0; i<3; i++) {
console.log(i);

}

// Output:
// 0
// 1
// 2

This is how to log the contents of an Array via a for loop:
const arr = ['a', 'b', 'c'];
for (let i=0; i<arr.length; i++) {

console.log(arr[i]);
}

// Output:
// 'a'
// 'b'
// 'c'

If you omit all three parts of the head, you get an infinite loop:
for (;;) {

if (Math.random() === 0) break;
}

23.8 for-of loops
A for-of loop iterates over an iterable – a data container that supports the iteration protocol.
Each iterated value is stored in a variable, as specified in the head:

200 23 Control flow statements

for («iteration_variable» of «iterable») {
«statements»

}

The iteration variable is usually created via a variable declaration:
const iterable = ['hello', 'world'];
for (const elem of iterable) {

console.log(elem);
}
// Output:
// 'hello'
// 'world'

But you can also use a (mutable) variable that already exists:
const iterable = ['hello', 'world'];
let elem;
for (elem of iterable) {

console.log(elem);
}

23.8.1 const: for-of vs. for
Note that in for-of loops you can use const. The iteration variable can still be different
for each iteration (it just can’t change during the iteration). Think of it as a new const
declaration being executed each time in a fresh scope.
In contrast, in for loops you must declare variables via let or var if their values change.

23.8.2 Iterating over iterables
As mentioned before, for-of works with any iterable object, not just with Arrays – for
example, with Sets:

const set = new Set(['hello', 'world']);
for (const elem of set) {

console.log(elem);
}

23.8.3 Iterating over [index, element] pairs of Arrays
Lastly, you can also use for-of to iterate over the [index, element] entries of Arrays:

const arr = ['a', 'b', 'c'];
for (const [index, elem] of arr.entries()) {

console.log(`${index} -> ${elem}`);
}
// Output:
// '0 -> a'
// '1 -> b'
// '2 -> c'

23.9 for-await-of loops 201

With [index, element], we are using destructuring to access Array elements.

Exercise: for-of
exercises/control-flow/array_to_string_test.mjs

23.9 for-await-of loops
for-await-of is like for-of, but it works with asynchronous iterables instead of syn-
chronous ones. And it can only be used inside async functions and async generators.

for await (const item of asyncIterable) {
// ···

}

for-await-of is described in detail in the chapter on asynchronous iteration.

23.10 for-in loops (avoid)

Recommendation: don’t use for-in loops
for-in has several pitfalls. Therefore, it is usually best to avoid it.

This is an example of using for-in properly, which involves boilerplate code (line A):
function getOwnPropertyNames(obj) {

const result = [];
for (const key in obj) {

if ({}.hasOwnProperty.call(obj, key)) { // (A)
result.push(key);

}
}
return result;

}
assert.deepEqual(

getOwnPropertyNames({ a: 1, b:2 }),
['a', 'b']);

assert.deepEqual(
getOwnPropertyNames(['a', 'b']),
['0', '1']); // strings!

We can implement the same functionality without for-in, which is almost always better:
function getOwnPropertyNames(obj) {

const result = [];
for (const key of Object.keys(obj)) {

result.push(key);
}

202 23 Control flow statements

return result;
}

Quiz
See quiz app.

Chapter 24

Exception handling

Contents
24.1 Motivation: throwing and catching exceptions 203
24.2 throw . 204

24.2.1 Options for creating error objects 205
24.3 The try statement . 205

24.3.1 The try block . 205
24.3.2 The catch clause . 205
24.3.3 The finally clause . 206

24.4 Error classes . 207
24.4.1 Properties of error objects . 207

This chapter covers how JavaScript handles exceptions.

Why doesn’t JavaScript throw exceptions more often?
JavaScript didn’t support exceptions until ES3. That explains why they are used
sparingly by the language and its standard library.

24.1 Motivation: throwing and catching exceptions
Consider the following code. It reads profiles stored in files into an Array with instances
of class Profile:

function readProfiles(filePaths) {
const profiles = [];
for (const filePath of filePaths) {

try {
const profile = readOneProfile(filePath);
profiles.push(profile);

203

204 24 Exception handling

} catch (err) { // (A)
console.log('Error in: '+filePath, err);

}
}

}
function readOneProfile(filePath) {

const profile = new Profile();
const file = openFile(filePath);
// ··· (Read the data in `file` into `profile`)
return profile;

}
function openFile(filePath) {

if (!fs.existsSync(filePath)) {
throw new Error('Could not find file '+filePath); // (B)

}
// ··· (Open the file whose path is `filePath`)

}

Let’s examine what happens in line B: An error occurred, but the best place to handle
the problem is not the current location, it’s line A. There, we can skip the current file and
move on to the next one.

Therefore:

• In line B, we use a throw statement to indicate that there was a problem.
• In line A, we use a try-catch statement to handle the problem.

When we throw, the following constructs are active:

readProfiles(···)
for (const filePath of filePaths)

try
readOneProfile(···)

openFile(···)
if (!fs.existsSync(filePath))
throw

One by one, throw exits the nested constructs, until it encounters a try statement. Execu-
tion continues in the catch clause of that try statement.

24.2 throw

This is the syntax of the throw statement:

throw «value»;

Any value can be thrown, but it’s best to throw an instance of Error or its subclasses.

throw new Error('Problem!');

24.3 The try statement 205

24.2.1 Options for creating error objects
• Use class Error. That is less limiting in JavaScript than in a more static language
because you can add your own properties to instances:

const err = new Error('Could not find the file');
err.filePath = filePath;
throw err;

• Use one of JavaScript’s subclasses of Error (which are listed later).
• Subclass Error yourself.

class MyError extends Error {
}
function func() {

throw new MyError('Problem!');
}
assert.throws(

() => func(),
MyError);

24.3 The try statement
The maximal version of the try statement looks as follows:

try {
«try_statements»

} catch (error) {
«catch_statements»

} finally {
«finally_statements»

}

You can combine these clauses as follows:
• try-catch
• try-finally
• try-catch-finally

Since ECMAScript 2019, you can omit the catch parameter (error), if you are not inter-
ested in the value that was thrown.

24.3.1 The try block
The try block can be considered the body of the statement. This is where we execute the
regular code.

24.3.2 The catch clause
If an exception reaches the try block, then it is assigned to the parameter of the catch
clause and the code in that clause is executed. Next, execution normally continues after

206 24 Exception handling

the try statement. That may change if:
• There is a return, break, or throw inside the catch block.
• There is a finally clause (which is always executed before the try statement ends).

The following code demonstrates that the value that is thrown in line A is indeed caught
in line B.

const errorObject = new Error();
function func() {

throw errorObject; // (A)
}

try {
func();

} catch (err) { // (B)
assert.equal(err, errorObject);

}

24.3.3 The finally clause
The code inside the finally clause is always executed at the end of a try statement – no
matter what happens in the try block or the catch clause.
Let’s look at a common use case for finally: You have created a resource and want to
always destroy it when you are done with it, no matter what happens while working
with it. You’d implement that as follows:

const resource = createResource();
try {

// Work with `resource`. Errors may be thrown.
} finally {

resource.destroy();
}

24.3.3.1 finally is always executed
The finally clause is always executed, even if an error is thrown (line A):

let finallyWasExecuted = false;
assert.throws(

() => {
try {

throw new Error(); // (A)
} finally {

finallyWasExecuted = true;
}

},
Error

);
assert.equal(finallyWasExecuted, true);

24.4 Error classes 207

And even if there is a return statement (line A):
let finallyWasExecuted = false;
function func() {

try {
return; // (A)

} finally {
finallyWasExecuted = true;

}
}
func();
assert.equal(finallyWasExecuted, true);

24.4 Error classes
Error is the common superclass of all built-in error classes. It has the following subclasses
(I’m quoting the ECMAScript specification):

• RangeError: Indicates a value that is not in the set or range of allowable values.
• ReferenceError: Indicate that an invalid reference value has been detected.
• SyntaxError: Indicates that a parsing error has occurred.
• TypeError: is used to indicate an unsuccessful operation when none of the other

NativeError objects are an appropriate indication of the failure cause.
• URIError: Indicates that one of the global URI handling functions was used in a
way that is incompatible with its definition.

24.4.1 Properties of error objects
Consider err, an instance of Error:

const err = new Error('Hello!');
assert.equal(String(err), 'Error: Hello!');

Two properties of err are especially useful:
• .message: contains just the error message.

assert.equal(err.message, 'Hello!');

• .stack: contains a stack trace. It is supported by all mainstream browsers.
assert.equal(
err.stack,
`
Error: Hello!

at ch_exception-handling.mjs:1:13
`.trim());

Exercise: Exception handling

https://tc39.github.io/ecma262/#sec-native-error-types-used-in-this-standard

208 24 Exception handling

exercises/exception-handling/call_function_test.mjs

Quiz
See quiz app.

Chapter 25

Callable values

Contents
25.1 Kinds of functions . 209
25.2 Ordinary functions . 210

25.2.1 Parts of a function declaration 210
25.2.2 Roles played by ordinary functions 211
25.2.3 Names of ordinary functions 211

25.3 Specialized functions . 212
25.3.1 Specialized functions are still functions 212
25.3.2 Recommendation: prefer specialized functions 213
25.3.3 Arrow functions . 213

25.4 More kinds of functions and methods 215
25.5 Returning values from functions and methods 216
25.6 Parameter handling . 217

25.6.1 Terminology: parameters vs. arguments 217
25.6.2 Terminology: callback . 217
25.6.3 Too many or not enough arguments 218
25.6.4 Parameter default values . 218
25.6.5 Rest parameters . 218
25.6.6 Named parameters . 219
25.6.7 Simulating named parameters 220
25.6.8 Spreading (...) into function calls 220

25.7 Dynamically evaluating code: eval(), new Function() (advanced) . 221
25.7.1 eval() . 222
25.7.2 new Function() . 222
25.7.3 Recommendations . 223

25.1 Kinds of functions
JavaScript has two categories of functions:

209

210 25 Callable values

• An ordinary function can play several roles:
– Real function
– Method
– Constructor function

• A specialized function can only play one of those roles – for example:
– An arrow function can only be a real function.
– A method can only be a method.
– A class can only be a constructor function.

The next two sections explain what all of those things mean.

25.2 Ordinary functions
The following code shows three ways of doing (roughly) the same thing: creating an
ordinary function.

// Function declaration (a statement)
function ordinary1(a, b, c) {

// ···
}

// const plus anonymous function expression
const ordinary2 = function (a, b, c) {

// ···
};

// const plus named function expression
const ordinary3 = function myName(a, b, c) {

// `myName` is only accessible in here
};

As we have seen in §12.8 “Declarations: scope and activation”, function declarations are
activated early, while variable declarations (e.g., via const) are not.
The syntax of function declarations and function expressions is very similar. The context
determines which is which. For more information on this kind of syntactic ambiguity,
consult §8.5 “Ambiguous syntax”.

25.2.1 Parts of a function declaration
Let’s examine the parts of a function declaration via an example:

function add(x, y) {
return x + y;

}

• add is the name of the function declaration.
• add(x, y) is the head of the function declaration.
• x and y are the parameters.
• The curly braces ({ and }) and everything between them are the body of the function
declaration.

25.2 Ordinary functions 211

• The return statement explicitly returns a value from the function.

25.2.2 Roles played by ordinary functions
Consider the following function declaration from the previous section:

function add(x, y) {
return x + y;

}

This function declaration creates an ordinary functionwhose name is add. As an ordinary
function, add() can play three roles:

• Real function: invoked via a function call.
assert.equal(add(2, 1), 3);

• Method: stored in property, invoked via a method call.
const obj = { addAsMethod: add };
assert.equal(obj.addAsMethod(2, 4), 6); // (A)

In line A, obj is called the receiver of the method call. It can be accessed via this
inside the method.

• Constructor function/class: invoked via new.
const inst = new add();
assert.equal(inst instanceof add, true);

(As an aside, the names of classes normally start with capital letters.)

Ordinary function vs. real function
In JavaScript, we distinguish:

• The entity ordinary function
• The role real function, as played by an ordinary function

In many other programming languages, the entity function only plays one role –
function. Therefore, the same name function can be used for both.

25.2.3 Names of ordinary functions
The name of a function expression is only accessible inside the function, where the func-
tion can use it to refer to itself (e.g., for self-recursion):

const func = function funcExpr() { return funcExpr };
assert.equal(func(), func);

// The name `funcExpr` only exists inside the function:
assert.throws(() => funcExpr(), ReferenceError);

In contrast, the name of a function declaration is accessible inside the current scope:

212 25 Callable values

function funcDecl() { return funcDecl }

// The name `funcDecl` exists in the current scope
assert.equal(funcDecl(), funcDecl);

25.3 Specialized functions
Specialized functions are single-purpose versions of ordinary functions. Each one of
them specializes in a single role:

• The purpose of an arrow function is to be a real function:
const arrow = () => { return 123 };
assert.equal(arrow(), 123);

• The purpose of a method is to be a method:
const obj = { method() { return 'abc' } };
assert.equal(obj.method(), 'abc');

• The purpose of a class is to be a constructor function:
class MyClass { /* ··· */ }
const inst = new MyClass();

Apart from nicer syntax, each kind of specialized function also supports new features,
making them better at their jobs than ordinary functions.

• Arrow functions are explained later in this chapter.
• Methods are explained in the chapter on single objects.
• Classes are explained in the chapter on classes.

Tbl. 25.1 lists the capabilities of ordinary and specialized functions.

Table 25.1: Capabilities of four kinds of functions. “Lexical this” means
that this is defined by the surroundings of an arrow function, not by
method calls.

Function call Method call Constructor call
Ordinary function (this === undefined) ✔ ✔
Arrow function ✔ (lexical this) ✘
Method (this === undefined) ✔ ✘
Class ✘ ✘ ✔

25.3.1 Specialized functions are still functions
It’s important to note that arrow functions, methods, and classes are still categorized as
functions:

> (() => {}) instanceof Function
true
> ({ method() {} }.method) instanceof Function

25.3 Specialized functions 213

true
> (class SomeClass {}) instanceof Function
true

25.3.2 Recommendation: prefer specialized functions
Normally, you should prefer specialized functions over ordinary functions, especially
classes and methods. The choice between an arrow function and an ordinary function is
less clear-cut, though:

• On one hand, an ordinary function has this as an implicit parameter. That param-
eter is set to undefined during function calls – which is not what you want. An
arrow function treats this like any other variable. For details, see §28.4.6 “Avoid-
ing the pitfalls of this”.

• On the other hand, I like the syntax of a function declaration (which produces an
ordinary function). If you don’t use this inside it, it is mostly equivalent to const
plus arrow function:

function funcDecl(x, y) {
return x * y;

}
const arrowFunc = (x, y) => {

return x * y;
};

25.3.3 Arrow functions
Arrow functions were added to JavaScript for two reasons:

1. To provide a more concise way for creating functions.
2. To make working with real functions easier: You can’t refer to the this of the sur-

rounding scope inside an ordinary function.
Next, we’ll first look at the syntax of arrow functions and then how they help with this.

25.3.3.1 The syntax of arrow functions
Let’s review the syntax of an anonymous function expression:

const f = function (x, y, z) { return 123 };

The (roughly) equivalent arrow function looks as follows. Arrow functions are expres-
sions.

const f = (x, y, z) => { return 123 };

Here, the body of the arrow function is a block. But it can also be an expression. The
following arrow function works exactly like the previous one.

const f = (x, y, z) => 123;

If an arrow function has only a single parameter and that parameter is an identifier (not
a destructuring pattern) then you can omit the parentheses around the parameter:

214 25 Callable values

const id = x => x;

That is convenient when passing arrow functions as parameters to other functions or
methods:

> [1,2,3].map(x => x+1)
[2, 3, 4]

This previous example demonstrates one benefit of arrow functions – conciseness. If we
perform the same task with a function expression, our code is more verbose:

[1,2,3].map(function (x) { return x+1 });

25.3.3.2 Arrow functions: lexical this

Ordinary functions can be both methods and real functions. Alas, the two roles are in
conflict:

• As each ordinary function can be a method, it has its own this.
• The own thismakes it impossible to access the this of the surrounding scope from
inside an ordinary function. And that is inconvenient for real functions.

The following code demonstrates the issue:

const person = {
name: 'Jill',
someMethod() {

const ordinaryFunc = function () {
assert.throws(
() => this.name, // (A)
/^TypeError: Cannot read property 'name' of undefined$/);

};
const arrowFunc = () => {

assert.equal(this.name, 'Jill'); // (B)
};

ordinaryFunc();
arrowFunc();

},
}

In this code, we can observe two ways of handling this:

• Dynamic this: In line A, we try to access the this of .someMethod() from an ordi-
nary function. There, it is shadowed by the function’s own this, which is undefined
(as filled in by the function call). Given that ordinary functions receive their this
via (dynamic) function or method calls, their this is called dynamic.

• Lexical this: In line B, we again try to access the this of .someMethod(). This time,
we succeed because the arrow functiondoes not have its own this. this is resolved
lexically, just like any other variable. That’s why the this of arrow functions is
called lexical.

25.4 More kinds of functions and methods 215

25.3.3.3 Syntax pitfall: returning an object literal from an arrow function
If you want the expression body of an arrow function to be an object literal, youmust put
the literal in parentheses:

const func1 = () => ({a: 1});
assert.deepEqual(func1(), { a: 1 });

If you don’t, JavaScript thinks, the arrow function has a block body (that doesn’t return
anything):

const func2 = () => {a: 1};
assert.deepEqual(func2(), undefined);

{a: 1} is interpreted as a blockwith the label a: and the expression statement 1. Without
an explicit return statement, the block body returns undefined.
This pitfall is caused by syntactic ambiguity: object literals and code blocks have the same
syntax. We use the parentheses to tell JavaScript that the body is an expression (an object
literal) and not a statement (a block).
Formore information on shadowing this, consult §28.4.5 “thispitfall: accidentally shad-
owing this”.

25.4 More kinds of functions and methods

This section is a summary of upcoming content
This section mainly serves as a reference for the current and upcoming chapters.
Don’t worry if you don’t understand everything.

So far, all (real) functions and methods, that we have seen, were:
• Single-result
• Synchronous

Later chapters will cover other modes of programming:
• Iteration treats objects as containers of data (so-called iterables) and provides a stan-
dardized way for retrieving what is inside them. If a function or a method returns
an iterable, it returns multiple values.

• Asynchronous programming deals with handling a long-running computation. You
are notified when the computation is finished and can do something else in be-
tween. The standard pattern for asynchronously delivering single results is called
Promise.

These modes can be combined – for example, there are synchronous iterables and asyn-
chronous iterables.
Several new kinds of functions and methods help with some of the mode combinations:

• Async functions help implement functions that return Promises. There are also async
methods.

216 25 Callable values

• Synchronous generator functions help implement functions that return synchronous
iterables. There are also synchronous generator methods.

• Asynchronous generator functions help implement functions that return asyn-
chronous iterables. There are also asynchronous generator methods.

That leaves us with 4 kinds (2 × 2) of functions and methods:
• Synchronous vs. asynchronous
• Generator vs. single-result

Tbl. 25.2 gives an overview of the syntax for creating these 4 kinds of functions andmeth-
ods.

Table 25.2: Syntax for creating functions and methods. The last column
specifies how many values are produced by an entity.

Result Values
Sync function Sync method
function f() {} { m() {} } value 1
f = function () {}
f = () => {}
Sync generator function Sync gen. method
function* f() {} { * m() {} } iterable 0+
f = function* () {}
Async function Async method
async function f() {} { async m() {} } Promise 1
f = async function () {}
f = async () => {}
Async generator function Async gen. method
async function* f() {} { async * m() {} } async iterable 0+
f = async function* () {}

25.5 Returning values from functions and methods
(Everything mentioned in this section applies to both functions and methods.)
The return statement explicitly returns a value from a function:

function func() {
return 123;

}
assert.equal(func(), 123);

Another example:
function boolToYesNo(bool) {

if (bool) {
return 'Yes';

} else {
return 'No';

25.6 Parameter handling 217

}
}
assert.equal(boolToYesNo(true), 'Yes');
assert.equal(boolToYesNo(false), 'No');

If, at the end of a function, you haven’t returned anything explicitly, JavaScript returns
undefined for you:

function noReturn() {
// No explicit return

}
assert.equal(noReturn(), undefined);

25.6 Parameter handling
Once again, I am only mentioning functions in this section, but everything also applies
to methods.

25.6.1 Terminology: parameters vs. arguments
The term parameter and the term argument basically mean the same thing. If you want to,
you can make the following distinction:

• Parameters are part of a function definition. They are also called formal parameters
and formal arguments.

• Arguments are part of a function call. They are also called actual parameters and
actual arguments.

25.6.2 Terminology: callback
A callback or callback function is a function that is an argument of a function or method call.
The following is an example of a callback:

const myArray = ['a', 'b'];
const callback = (x) => console.log(x);
myArray.forEach(callback);

// Output:
// 'a'
// 'b'

JavaScript uses the term callback broadly
In other programming languages, the term callback often has a narrower meaning:
it refers to a pattern for delivering results asynchronously, via a function-valued
parameter. In this meaning, the callback (or continuation) is invoked after a function
has completely finished its computation.

218 25 Callable values

Callbacks as an asynchronous pattern, are described in the chapter on asynchronous
programming.

25.6.3 Too many or not enough arguments
JavaScript does not complain if a function call provides a different number of arguments
than expected by the function definition:

• Extra arguments are ignored.
• Missing parameters are set to undefined.

For example:
function foo(x, y) {

return [x, y];
}

// Too many arguments:
assert.deepEqual(foo('a', 'b', 'c'), ['a', 'b']);

// The expected number of arguments:
assert.deepEqual(foo('a', 'b'), ['a', 'b']);

// Not enough arguments:
assert.deepEqual(foo('a'), ['a', undefined]);

25.6.4 Parameter default values
Parameter default values specify the value to use if a parameter has not been provided –
for example:

function f(x, y=0) {
return [x, y];

}

assert.deepEqual(f(1), [1, 0]);
assert.deepEqual(f(), [undefined, 0]);

undefined also triggers the default value:
assert.deepEqual(

f(undefined, undefined),
[undefined, 0]);

25.6.5 Rest parameters
A rest parameter is declared by prefixing an identifier with three dots (...). During a
function or method call, it receives an Array with all remaining arguments. If there are
no extra arguments at the end, it is an empty Array – for example:

function f(x, ...y) {
return [x, y];

25.6 Parameter handling 219

}
assert.deepEqual(

f('a', 'b', 'c'),
['a', ['b', 'c']]);

assert.deepEqual(
f(),
[undefined, []]);

25.6.5.1 Enforcing a certain number of arguments via a rest parameter

You can use a rest parameter to enforce a certain number of arguments. Take, for example,
the following function:

function createPoint(x, y) {
return {x, y};

// same as {x: x, y: y}
}

This is how we force callers to always provide two arguments:

function createPoint(...args) {
if (args.length !== 2) {

throw new Error('Please provide exactly 2 arguments!');
}
const [x, y] = args; // (A)
return {x, y};

}

In line A, we access the elements of args via destructuring.

25.6.6 Named parameters
When someone calls a function, the arguments provided by the caller are assigned to the
parameters received by the callee. Two common ways of performing the mapping are:

1. Positional parameters: An argument is assigned to a parameter if they have the
same position. A function call with only positional arguments looks as follows.

selectEntries(3, 20, 2)

2. Named parameters: An argument is assigned to a parameter if they have the same
name. JavaScript doesn’t have named parameters, but you can simulate them. For
example, this is a function call with only (simulated) named arguments:

selectEntries({start: 3, end: 20, step: 2})

Named parameters have several benefits:

• They lead to more self-explanatory code because each argument has a descriptive
label. Just compare the two versions of selectEntries(): with the second one, it
is much easier to see what happens.

• The order of the arguments doesn’t matter (as long as the names are correct).

220 25 Callable values

• Handling more than one optional parameter is more convenient: callers can easily
provide any subset of all optional parameters and don’t have to be aware of the
ones they omit (with positional parameters, you have to fill in preceding optional
parameters, with undefined).

25.6.7 Simulating named parameters
JavaScript doesn’t have real named parameters. The official way of simulating them is
via object literals:

function selectEntries({start=0, end=-1, step=1}) {
return {start, end, step};

}

This function uses destructuring to access the properties of its single parameter. The pat-
tern it uses is an abbreviation for the following pattern:

{start: start=0, end: end=-1, step: step=1}

This destructuring pattern works for empty object literals:
> selectEntries({})
{ start: 0, end: -1, step: 1 }

But it does not work if you call the function without any parameters:
> selectEntries()
TypeError: Cannot destructure property `start` of 'undefined' or 'null'.

You can fix this by providing a default value for the whole pattern. This default value
works the same as default values for simpler parameter definitions: if the parameter is
missing, the default is used.

function selectEntries({start=0, end=-1, step=1} = {}) {
return {start, end, step};

}
assert.deepEqual(

selectEntries(),
{ start: 0, end: -1, step: 1 });

25.6.8 Spreading (...) into function calls
If you put three dots (...) in front of the argument of a function call, then you spread it.
Thatmeans that the argumentmust be an iterable object and the iterated values all become
arguments. In other words, a single argument is expanded into multiple arguments – for
example:

function func(x, y) {
console.log(x);
console.log(y);

}
const someIterable = ['a', 'b'];
func(...someIterable);

25.7 Dynamically evaluating code: eval(), new Function() (advanced) 221

// same as func('a', 'b')

// Output:
// 'a'
// 'b'

Spreading and rest parameters use the same syntax (...), but they serve opposite pur-
poses:

• Rest parameters are used when defining functions or methods. They collect argu-
ments into Arrays.

• Spread arguments are used when calling functions or methods. They turn iterable
objects into arguments.

25.6.8.1 Example: spreading into Math.max()

Math.max() returns the largest one of its zero or more arguments. Alas, it can’t be used
for Arrays, but spreading gives us a way out:

> Math.max(-1, 5, 11, 3)
11
> Math.max(...[-1, 5, 11, 3])
11
> Math.max(-1, ...[-5, 11], 3)
11

25.6.8.2 Example: spreading into Array.prototype.push()

Similarly, the Array method .push() destructively adds its zero or more parameters to
the end of its Array. JavaScript has no method for destructively appending an Array to
another one. Once again, we are saved by spreading:

const arr1 = ['a', 'b'];
const arr2 = ['c', 'd'];

arr1.push(...arr2);
assert.deepEqual(arr1, ['a', 'b', 'c', 'd']);

Exercises: Parameter handling
• Positional parameters: exercises/callables/positional_parameters_

test.mjs
• Named parameters: exercises/callables/named_parameters_test.mjs

25.7 Dynamically evaluating code: eval(), new Func-
tion() (advanced)

Next, we’ll look at two ways of evaluating code dynamically: eval() and new Func-
tion().

222 25 Callable values

25.7.1 eval()

Given a string str with JavaScript code, eval(str) evaluates that code and returns the
result:

> eval('2 ** 4')
16

There are two ways of invoking eval():
• Directly, via a function call. Then the code in its argument is evaluated inside the
current scope.

• Indirectly, not via a function call. Then it evaluates its code in global scope.
“Not via a function call” means “anything that looks different than eval(···)”:

• eval.call(undefined, '···')
• (0, eval)('···') (uses the comma operator)
• globalThis.eval('···')
• const e = eval; e('···')
• Etc.

The following code illustrates the difference:
globalThis.myVariable = 'global';
function func() {

const myVariable = 'local';

// Direct eval
assert.equal(eval('myVariable'), 'local');

// Indirect eval
assert.equal(eval.call(undefined, 'myVariable'), 'global');

}

Evaluating code in global context is safer because the code has access to fewer internals.

25.7.2 new Function()

new Function() creates a function object and is invoked as follows:
const func = new Function('«param_1»', ···, '«param_n»', '«func_body»');

The previous statement is equivalent to the next statement. Note that «param_1», etc., are
not inside string literals, anymore.

const func = function («param_1», ···, «param_n») {
«func_body»

};

In the next example, we create the same function twice, first via new Function(), then
via a function expression:

const times1 = new Function('a', 'b', 'return a * b');
const times2 = function (a, b) { return a * b };

25.7 Dynamically evaluating code: eval(), new Function() (advanced) 223

new Function() creates non-strict mode functions
Functions created via new Function() are sloppy.

25.7.3 Recommendations
Avoid dynamic evaluation of code as much as you can:

• It’s a security risk because it may enable an attacker to execute arbitrary code with
the privileges of your code.

• It may be switched off – for example, in browsers, via a Content Security Policy.
Very often, JavaScript is dynamic enough so that you don’t need eval() or similar. In the
following example, what we are doing with eval() (line A) can be achieved just as well
without it (line B).

const obj = {a: 1, b: 2};
const propKey = 'b';

assert.equal(eval('obj.' + propKey), 2); // (A)
assert.equal(obj[propKey], 2); // (B)

If you have to dynamically evaluate code:
• Prefer new Function() over eval(): it always executes its code in global context
and a function provides a clean interface to the evaluated code.

• Prefer indirect eval over direct eval: evaluating code in global context is safer.

Quiz
See quiz app.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

224 25 Callable values

Chapter 26

Environments: under the hood of
variables (bonus)

Contents
26.1 Environment: data structure for managing variables 225
26.2 Recursion via environments . 225

26.2.1 Executing the code . 226
26.3 Nested scopes via environments . 226

26.3.1 Executing the code . 228
26.4 Closures and environments . 230

In this chapter, we take a closer look at how the ECMAScript language specification han-
dles variables.

26.1 Environment: data structure for managing variables
An environment is the data structure that the ECMAScript specification uses to manage
variables. It is a dictionary whose keys are variable names and whose values are the
values of those variables. Each scope has its associated environment. Environmentsmust
be able to support the following phenomena related to variables:

• Recursion
• Nested scopes
• Closures

We’ll use examples to illustrate how that is done for each phenomenon.

26.2 Recursion via environments
We’ll tackle recursion first. Consider the following code:

225

226 26 Environments: under the hood of variables (bonus)

function f(x) {
return x * 2;

}
function g(y) {

const tmp = y + 1;
return f(tmp);

}
assert.equal(g(3), 8);

For each function call, you need fresh storage space for the variables (parameters and
local variables) of the called function. This is managed via a stack of so-called execution
contexts, which are references to environments (for the purpose of this chapter). Environ-
ments themselves are stored on the heap. That is necessary because they occasionally live
on after execution has left their scopes (we’ll see that when exploring closures). Therefore,
they themselves can’t be managed via a stack.

26.2.1 Executing the code
While executing the code, we make the following pauses:

function f(x) {
// Pause 3
return x * 2;

}
function g(y) {

const tmp = y + 1;
// Pause 2
return f(tmp);

}
// Pause 1
assert.equal(g(3), 8);

This is what happens:
• Pause 1 – before calling g() (fig. 26.1).
• Pause 2 – while executing g() (fig. 26.2).
• Pause 3 – while executing f() (fig. 26.3).
• Remaining steps: Every time there is a return, one execution context is removed
from the stack.

26.3 Nested scopes via environments
We use the following code to explore how nested scopes are implemented via environ-
ments.

function f(x) {
function square() {

const result = x * x;

26.3 Nested scopes via environments 227

0
g function (y) { … }

function (x) { … }f

Lexical environmentsExecution contexts

Figure 26.1: Recursion, pause 1 – before calling g(): The execution context stack has
one entry, which points to the top-level environment. In that environment, there are two
entries; one for f() and one for g().

1
0

g function (y) { … }
function (x) { … }f

Lexical environmentsExecution contexts

tmp 4
3y

Figure 26.2: Recursion, pause 2 – while executing g(): The top of the execution context
stack points to the environment that was created for g(). That environment contains
entries for the argument y and for the local variable tmp.

2
1
0

g function (y) { … }
function (x) { … }f

Lexical environmentsExecution contexts

tmp 4
3y

x 4

Figure 26.3: Recursion, pause 3 – while executing f(): The top execution context now
points to the environment for f().

228 26 Environments: under the hood of variables (bonus)

return result;
}
return square();

}
assert.equal(f(6), 36);

Here, we have three nested scopes: The top-level scope, the scope of f(), and the scope
of square(). Observations:

• The scopes are connected. An inner scope “inherits” all the variables of an outer
scope (minus the ones it shadows).

• Nesting scopes as a mechanism is independent of recursion. The latter is best man-
aged by a stack of independent environments. The former is a relationship that
each environment has with the environment “in which” it is created.

Therefore, the environment of each scope points to the environment of the surrounding
scope via a field called outer. When we are looking up the value of a variable, we first
search for its name in the current environment, then in the outer environment, then in
the outer environment’s outer environment, etc. The whole chain of outer environments
contains all variables that can currently be accessed (minus shadowed variables).

When you make a function call, you create a new environment. The outer environment
of that environment is the environment in which the function was created. To help set up
the field outer of environments created via function calls, each function has an internal
property named [[Scope]] that points to its “birth environment”.

26.3.1 Executing the code
These are the pauses we are making while executing the code:

function f(x) {
function square() {

const result = x * x;
// Pause 3
return result;

}
// Pause 2
return square();

}
// Pause 1
assert.equal(f(6), 36);

This is what happens:

• Pause 1 – before calling f() (fig. 26.4).
• Pause 2 – while executing f() (fig. 26.5).
• Pause 3 – while executing square() (fig. 26.6).
• After that, return statements pop execution entries off the stack.

26.3 Nested scopes via environments 229

0 f

Lexical environmentsExecution contexts Functions

[[Scope]]

Figure 26.4: Nested scopes, pause 1 – before calling f(): The top-level environment has
a single entry, for f(). The birth environment of f() is the top-level environment. There-
fore, f’s [[Scope]] points to it.

1
0 f

square
6x

outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]

f(6)

Figure 26.5: Nested scopes, pause 2 – while executing f(): There is now an environment
for the function call f(6). The outer environment of that environment is the birth envi-
ronment of f() (the top-level environment at index 0). We can see that the field outer
was set to the value of f’s [[Scope]]. Furthermore, the [[Scope]] of the new function
square() is the environment that was just created.

2
1
0 f

square
6x

outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]

result 36

outer

f(6)

square()

Figure 26.6: Nested scopes, pause 3 – while executing square(): The previous pattern
was repeated: the outer of the most recent environment was set up via the [[Scope]]
of the function that we just called. The chain of scopes created via outer, contains all
variables that are active right now. For example, we can access result, square, and f
if we want to. Environments reflect two aspects of variables. First, the chain of outer
environments reflects the nested static scopes. Second, the stack of execution contexts
reflects what function calls were made, dynamically.

230 26 Environments: under the hood of variables (bonus)

26.4 Closures and environments
To see how environments are used to implement closures, we are using the following
example:

function add(x) {
return (y) => { // (A)

return x + y;
};

}
assert.equal(add(3)(1), 4); // (B)

What is going on here? add() is a function that returns a function. When we make the
nested function call add(3)(1) in line B, the first parameter is for add(), the second pa-
rameter is for the function it returns. This works because the function created in line A
does not lose the connection to its birth scope when it leaves that scope. The associated
environment is kept alive by that connection and the function still has access to variable
x in that environment (x is free inside the function).
This nested way of calling add() has an advantage: if you only make the first function
call, you get a version of add() whose parameter x is already filled in:

const plus2 = add(2);
assert.equal(plus2(5), 7);

Converting a functionwith twoparameters into twonested functionswith one parameter
each, is called currying. add() is a curried function.
Only filling in some of the parameters of a function is called partial application (the function
has not been fully applied yet). Method .bind() of functions performs partial applica-
tion. In the previous example, we can see that partial application is simple if a function
is curried.

26.4.0.1 Executing the code
As we are executing the following code, we are making three pauses:

function add(x) {
return (y) => {

// Pause 3: plus2(5)
return x + y;

}; // Pause 1: add(2)
}
const plus2 = add(2);
// Pause 2
assert.equal(plus2(5), 7);

This is what happens:
• Pause 1 – during the execution of add(2) (fig. 26.7).
• Pause 2 – after the execution of add(2) (fig. 26.8).
• Pause 3 – while executing plus2(5) (fig. 26.9).

26.4 Closures and environments 231

[[Scope]]
1
0

(uninit.)plus2
add

2x
outer

Lexical environmentsExecution contexts Functions

[[Scope]]
add(2)

Figure 26.7: Closures, pause 1 – during the execution of add(2): We can see that the
function returned by add() already exists (see bottom right corner) and that it points to
its birth environment via its internal property [[Scope]]. Note that plus2 is still in its
temporal dead zone and uninitialized.

plus2
add0

2x
outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]
Kept alive by closure add(2)

Figure 26.8: Closures, pause 2 – after the execution of add(2): plus2 now points to the
function returned by add(2). That function keeps its birth environment (the environment
of add(2)) alive via its [[Scope]].

plus2
add

1
0

2x
outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]

5y
outer

add(2)

plus2(5)

Figure 26.9: Closures, pause 3 – while executing plus2(5): The [[Scope]] of plus2 is
used to set up the outer of the new environment. That’s how the current function gets
access to x.

232 26 Environments: under the hood of variables (bonus)

Part VI

Modularity

233

Chapter 27

Modules

Contents
27.1 Overview: syntax of ECMAScript modules 236

27.1.1 Exporting . 236
27.1.2 Importing . 236

27.2 JavaScript source code formats . 237
27.2.1 Code before built-in modules was written in ECMAScript 5 . . 237

27.3 Before we had modules, we had scripts 237
27.4 Module systems created prior to ES6 238

27.4.1 Server side: CommonJS modules 239
27.4.2 Client side: AMD (Asynchronous Module Definition) modules 239
27.4.3 Characteristics of JavaScript modules 240

27.5 ECMAScript modules . 240
27.5.1 ES modules: syntax, semantics, loader API 241

27.6 Named exports and imports . 241
27.6.1 Named exports . 241
27.6.2 Named imports . 242
27.6.3 Namespace imports . 243
27.6.4 Named exporting styles: inline versus clause (advanced) . . . 243

27.7 Default exports and imports . 243
27.7.1 The two styles of default-exporting 244
27.7.2 The default export as a named export (advanced) 245

27.8 More details on exporting and importing 246
27.8.1 Imports are read-only views on exports 246
27.8.2 ESM’s transparent support for cyclic imports (advanced) . . . 247

27.9 npm packages . 247
27.9.1 Packages are installed inside a directory node_modules/ 248
27.9.2 Why can npm be used to install frontend libraries? 249

27.10Naming modules . 249
27.11Module specifiers . 250

235

236 27 Modules

27.11.1 Categories of module specifiers 250
27.11.2 ES module specifiers in browsers 250
27.11.3 ES module specifiers on Node.js 251

27.12Loading modules dynamically via import() 252
27.12.1 Example: loading a module dynamically 252
27.12.2 Use cases for import() . 253

27.13Preview: import.meta.url . 254
27.13.1 import.meta.url and class URL 254
27.13.2 import.meta.url on Node.js 255

27.14Polyfills: emulating native web platform features (advanced) 256
27.14.1 Sources of this section . 256

27.1 Overview: syntax of ECMAScript modules
27.1.1 Exporting

// Named exports
export function f() {}
export const one = 1;
export {foo, b as bar};

// Default exports
export default function f() {} // declaration with optional name
// Replacement for `const` (there must be exactly one value)
export default 123;

// Re-exporting from another module
export * from './some-module.mjs';
export {foo, b as bar} from './some-module.mjs';

27.1.2 Importing
// Named imports
import {foo, bar as b} from './some-module.mjs';
// Namespace import
import * as someModule from './some-module.mjs';
// Default import
import someModule from './some-module.mjs';

// Combinations:
import someModule, * as someModule from './some-module.mjs';
import someModule, {foo, bar as b} from './some-module.mjs';

// Empty import (for modules with side effects)
import './some-module.mjs';

27.3 Before we had modules, we had scripts 237

27.2 JavaScript source code formats
The current landscape of JavaScript modules is quite diverse: ES6 brought built-in mod-
ules, but the source code formats that came before them, are still around, too. Under-
standing the latter helps understand the former, so let’s investigate. The next sections
describe the following ways of delivering JavaScript source code:

• Scripts are code fragments that browsers run in global scope. They are precursors
of modules.

• CommonJS modules are a module format that is mainly used on servers (e.g., via
Node.js).

• AMD modules are a module format that is mainly used in browsers.
• ECMAScript modules are JavaScript’s built-in module format. It supersedes all pre-
vious formats.

Tbl. 27.1 gives an overview of these code formats. Note that for CommonJS modules
and ECMAScript modules, two filename extensions are commonly used. Which one is
appropriate depends on how youwant to use a file. Details are given later in this chapter.

Table 27.1: Ways of delivering JavaScript source code.

Runs on Loaded Filename ext.
Script browsers async .js
CommonJS module servers sync .js .cjs
AMDmodule browsers async .js
ECMAScript module browsers and servers async .js .mjs

27.2.1 Code before built-in modules was written in ECMAScript 5
Before we get to built-in modules (which were introduced with ES6), all code that you’ll
see, will be written in ES5. Among other things:

• ES5 did not have const and let, only var.
• ES5 did not have arrow functions, only function expressions.

27.3 Before we had modules, we had scripts
Initially, browsers only had scripts – pieces of code that were executed in global scope. As
an example, consider an HTML file that loads script files via the following HTML:

<script src="other-module1.js"></script>
<script src="other-module2.js"></script>
<script src="my-module.js"></script>

The main file is my-module.js, where we simulate a module:

var myModule = (function () { // Open IIFE
// Imports (via global variables)
var importedFunc1 = otherModule1.importedFunc1;

238 27 Modules

var importedFunc2 = otherModule2.importedFunc2;

// Body
function internalFunc() {

// ···
}
function exportedFunc() {

importedFunc1();
importedFunc2();
internalFunc();

}

// Exports (assigned to global variable `myModule`)
return {

exportedFunc: exportedFunc,
};

})(); // Close IIFE

myModule is a global variable that is assigned the result of immediately invoking a func-
tion expression. The function expression starts in the first line. It is invoked in the last
line.

This way of wrapping a code fragment is called immediately invoked function expression
(IIFE, coined by BenAlman). What dowe gain from an IIFE? var is not block-scoped (like
const and let), it is function-scoped: the only way to create new scopes for var-declared
variables is via functions or methods (with const and let, you can use either functions,
methods, or blocks {}). Therefore, the IIFE in the example hides all of the following vari-
ables from global scope and minimizes name clashes: importedFunc1, importedFunc2,
internalFunc, exportedFunc.

Note that we are using an IIFE in a particular manner: at the end, we pick what we
want to export and return it via an object literal. That is called the revealing module pattern
(coined by Christian Heilmann).

This way of simulating modules, has several issues:

• Libraries in script files export and import functionality via global variables, which
risks name clashes.

• Dependencies are not stated explicitly, and there is no built-in way for a script to
load the scripts it depends on. Therefore, the web page has to load not just the
scripts that are needed by the page but also the dependencies of those scripts, the
dependencies’ dependencies, etc. And it has to do so in the right order!

27.4 Module systems created prior to ES6
Prior to ECMAScript 6, JavaScript did not have built-in modules. Therefore, the flexi-
ble syntax of the language was used to implement custom module systems within the
language. Two popular ones are:

• CommonJS (targeting the server side)

27.4 Module systems created prior to ES6 239

• AMD (Asynchronous Module Definition, targeting the client side)

27.4.1 Server side: CommonJS modules
The original CommonJS standard for modules was created for server and desktop plat-
forms. It was the foundation of the original Node.js module system, where it achieved
enormous popularity. Contributing to that popularity were the npm package manager
for Node and tools that enabled using Node modules on the client side (browserify, web-
pack, and others).
From now on, CommonJS modulemeans the Node.js version of this standard (which has a
few additional features). This is an example of a CommonJS module:

// Imports
var importedFunc1 = require('./other-module1.js').importedFunc1;
var importedFunc2 = require('./other-module2.js').importedFunc2;

// Body
function internalFunc() {

// ···
}
function exportedFunc() {

importedFunc1();
importedFunc2();
internalFunc();

}

// Exports
module.exports = {

exportedFunc: exportedFunc,
};

CommonJS can be characterized as follows:
• Designed for servers.
• Modules are meant to be loaded synchronously (the importer waits while the im-
ported module is loaded and executed).

• Compact syntax.

27.4.2 Client side: AMD (Asynchronous Module Definition) modules
The AMDmodule format was created to be easier to use in browsers than the CommonJS
format. Its most popular implementation is RequireJS. The following is an example of an
AMDmodule.

define(['./other-module1.js', './other-module2.js'],
function (otherModule1, otherModule2) {

var importedFunc1 = otherModule1.importedFunc1;
var importedFunc2 = otherModule2.importedFunc2;

function internalFunc() {

https://requirejs.org

240 27 Modules

// ···
}
function exportedFunc() {

importedFunc1();
importedFunc2();
internalFunc();

}

return {
exportedFunc: exportedFunc,

};
});

AMD can be characterized as follows:

• Designed for browsers.
• Modules are meant to be loaded asynchronously. That’s a crucial requirement for
browsers, where code can’t wait until a module has finished downloading. It has
to be notified once the module is available.

• The syntax is slightly more complicated.

On the plus side, AMD modules can be executed directly. In contrast, CommonJS mod-
ules must either be compiled before deployment or custom source code must be gener-
ated and evaluated dynamically (think eval()). That isn’t always permitted on the web.

27.4.3 Characteristics of JavaScript modules
Looking at CommonJS and AMD, similarities between JavaScript module systems
emerge:

• There is one module per file.
• Such a file is basically a piece of code that is executed:

– Local scope: The code is executed in a local “module scope”. Therefore, by
default, all of the variables, functions, and classes declared in it are internal
and not global.

– Exports: If you want any declared entity to be exported, you must explicitly
mark it as an export.

– Imports: Each module can import exported entities from other modules.
Those other modules are identified via module specifiers (usually paths,
occasionally full URLs).

• Modules are singletons: Even if a module is imported multiple times, only a single
“instance” of it exists.

• No global variables are used. Instead, module specifiers serve as global IDs.

27.5 ECMAScript modules
ECMAScript modules (ES modules or ESM) were introduced with ES6. They continue the
tradition of JavaScript modules and have all of their aforementioned characteristics. Ad-
ditionally:

27.6 Named exports and imports 241

• With CommonJS, ES modules share the compact syntax and support for cyclic de-
pendencies.

• With AMD, ES modules share being designed for asynchronous loading.
ES modules also have new benefits:

• The syntax is even more compact than CommonJS’s.
• Modules have static structures (which can’t be changed at runtime). That helps
with static checking, optimized access of imports, dead code elimination, and
more.

• Support for cyclic imports is completely transparent.
This is an example of ES module syntax:

import {importedFunc1} from './other-module1.mjs';
import {importedFunc2} from './other-module2.mjs';

function internalFunc() {
···

}

export function exportedFunc() {
importedFunc1();
importedFunc2();
internalFunc();

}

From now on, “module” means “ECMAScript module”.

27.5.1 ES modules: syntax, semantics, loader API
The full standard of ES modules comprises the following parts:

1. Syntax (how code is written): What is a module? How are imports and exports
declared? Etc.

2. Semantics (how code is executed): How are variable bindings exported? How are
imports connected with exports? Etc.

3. A programmatic loader API for configuring module loading.
Parts 1 and 2 were introduced with ES6. Work on part 3 is ongoing.

27.6 Named exports and imports
27.6.1 Named exports
Each module can have zero or more named exports.
As an example, consider the following two files:

lib/my-math.mjs
main.mjs

Module my-math.mjs has two named exports: square and LIGHTSPEED.

242 27 Modules

// Not exported, private to module
function times(a, b) {

return a * b;
}
export function square(x) {

return times(x, x);
}
export const LIGHTSPEED = 299792458;

To export something, we put the keyword export in front of a declaration. Entities that
are not exported are private to a module and can’t be accessed from outside.

27.6.2 Named imports
Module main.mjs has a single named import, square:

import {square} from './lib/my-math.mjs';
assert.equal(square(3), 9);

It can also rename its import:

import {square as sq} from './lib/my-math.mjs';
assert.equal(sq(3), 9);

27.6.2.1 Syntactic pitfall: named importing is not destructuring

Both named importing and destructuring look similar:

import {foo} from './bar.mjs'; // import
const {foo} = require('./bar.mjs'); // destructuring

But they are quite different:

• Imports remain connected with their exports.

• You can destructure again inside a destructuring pattern, but the {} in an import
statement can’t be nested.

• The syntax for renaming is different:

import {foo as f} from './bar.mjs'; // importing
const {foo: f} = require('./bar.mjs'); // destructuring

Rationale: Destructuring is reminiscent of an object literal (including nesting),
while importing evokes the idea of renaming.

Exercise: Named exports
exercises/modules/export_named_test.mjs

27.7 Default exports and imports 243

27.6.3 Namespace imports
Namespace imports are an alternative to named imports. If we namespace-import a mod-
ule, it becomes an object whose properties are the named exports. This is what main.mjs
looks like if we use a namespace import:

import * as myMath from './lib/my-math.mjs';
assert.equal(myMath.square(3), 9);

assert.deepEqual(
Object.keys(myMath), ['LIGHTSPEED', 'square']);

27.6.4 Named exporting styles: inline versus clause (advanced)
The named export style we have seen so far was inline: We exported entities by prefixing
them with the keyword export.
But we can also use separate export clauses. For example, this is what lib/my-math.mjs
looks like with an export clause:

function times(a, b) {
return a * b;

}
function square(x) {

return times(x, x);
}
const LIGHTSPEED = 299792458;

export { square, LIGHTSPEED }; // semicolon!

With an export clause, we can rename before exporting and use different names inter-
nally:

function times(a, b) {
return a * b;

}
function sq(x) {

return times(x, x);
}
const LS = 299792458;

export {
sq as square,
LS as LIGHTSPEED, // trailing comma is optional

};

27.7 Default exports and imports
Eachmodule can have atmost one default export. The idea is that themodule is the default-
exported value.

244 27 Modules

Avoid mixing named exports and default exports
Amodule can have both named exports and a default export, but it’s usually better
to stick to one export style per module.

As an example for default exports, consider the following two files:

my-func.mjs
main.mjs

Module my-func.mjs has a default export:

const GREETING = 'Hello!';
export default function () {

return GREETING;
}

Module main.mjs default-imports the exported function:

import myFunc from './my-func.mjs';
assert.equal(myFunc(), 'Hello!');

Note the syntactic difference: the curly braces around named imports indicate that we
are reaching into the module, while a default import is the module.

What are use cases for default exports?
The most common use case for a default export is a module that contains a single
function or a single class.

27.7.1 The two styles of default-exporting
There are two styles of doing default exports.

First, you can label existing declarations with export default:

export default function foo() {} // no semicolon!
export default class Bar {} // no semicolon!

Second, you can directly default-export values. In that style, export default is itself
much like a declaration.

export default 'abc';
export default foo();
export default /^xyz$/;
export default 5 * 7;
export default { no: false, yes: true };

27.7 Default exports and imports 245

27.7.1.1 Why are there two default export styles?
The reason is that export default can’t be used to label const: constmaydefinemultiple
values, but export defaultneeds exactly one value. Consider the following hypothetical
code:

// Not legal JavaScript!
export default const foo = 1, bar = 2, baz = 3;

With this code, you don’t know which one of the three values is the default export.

Exercise: Default exports
exercises/modules/export_default_test.mjs

27.7.2 The default export as a named export (advanced)
Internally, a default export is simply a named export whose name is default. As an
example, consider the previous module my-func.mjs with a default export:

const GREETING = 'Hello!';
export default function () {

return GREETING;
}

The following module my-func2.mjs is equivalent to that module:
const GREETING = 'Hello!';
function greet() {

return GREETING;
}

export {
greet as default,

};

For importing, we can use a normal default import:
import myFunc from './my-func2.mjs';
assert.equal(myFunc(), 'Hello!');

Or we can use a named import:
import {default as myFunc} from './my-func2.mjs';
assert.equal(myFunc(), 'Hello!');

The default export is also available via property .default of namespace imports:
import * as mf from './my-func2.mjs';
assert.equal(mf.default(), 'Hello!');

246 27 Modules

Isn’t default illegal as a variable name?
default can’t be a variable name, but it can be an export name and it can be a
property name:

const obj = {
default: 123,

};
assert.equal(obj.default, 123);

27.8 More details on exporting and importing
27.8.1 Imports are read-only views on exports
So far, we have used imports and exports intuitively, and everything seems to have
worked as expected. But now it is time to take a closer look at how imports and exports
are really related.

Consider the following two modules:

counter.mjs
main.mjs

counter.mjs exports a (mutable!) variable and a function:

export let counter = 3;
export function incCounter() {

counter++;
}

main.mjs name-imports both exports. When we use incCounter(), we discover that the
connection to counter is live – we can always access the live state of that variable:

import { counter, incCounter } from './counter.mjs';

// The imported value `counter` is live
assert.equal(counter, 3);
incCounter();
assert.equal(counter, 4);

Note that while the connection is live and we can read counter, we cannot change this
variable (e.g., via counter++).

There are two benefits to handling imports this way:

• It is easier to split modules because previously shared variables can become ex-
ports.

• This behavior is crucial for supporting transparent cyclic imports. Read on for
more information.

27.9 npm packages 247

27.8.2 ESM’s transparent support for cyclic imports (advanced)
ESM supports cyclic imports transparently. To understand how that is achieved, con-
sider the following example: fig. 27.1 shows a directed graph ofmodules importing other
modules. P importing M is the cycle in this case.

M

N O

P Q R S

Figure 27.1: A directed graph of modules importing modules: M imports N and O, N
imports P and Q, etc.

After parsing, these modules are set up in two phases:

• Instantiation: Every module is visited and its imports are connected to its exports.
Before a parent can be instantiated, all of its children must be instantiated.

• Evaluation: The bodies of the modules are executed. Once again, children are eval-
uated before parents.

This approach handles cyclic imports correctly, due to two features of ES modules:

• Due to the static structure of ESmodules, the exports are already known after pars-
ing. That makes it possible to instantiate P before its child M: P can already look
up M’s exports.

• When P is evaluated, M hasn’t been evaluated, yet. However, entities in P can al-
readymention imports fromM. They just can’t use them, yet, because the imported
values are filled in later. For example, a function in P can access an import from
M. The only limitation is that we must wait until after the evaluation of M, before
calling that function.

Imports being filled in later is enabled by them being “live immutable views” on
exports.

27.9 npm packages
The npm software registry is the dominantway of distributing JavaScript libraries and apps
for Node.js and web browsers. It is managed via the npm package manager (short: npm).
Software is distributed as so-called packages. A package is a directory containing arbitrary
files and a file package.json at the top level that describes the package. For example,
when npm creates an empty package inside a directory foo/, you get this package.json:

{
"name": "foo",
"version": "1.0.0",

248 27 Modules

"description": "",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"keywords": [],
"author": "",
"license": "ISC"

}

Some of these properties contain simple metadata:

• name specifies the name of this package. Once it is uploaded to the npm registry, it
can be installed via npm install foo.

• version is used for version management and follows semantic versioning, with
three numbers:

– Major version: is incremented when incompatible API changes are made.
– Minor version: is incremented when functionality is added in a backward
compatible manner.

– Patch version: is incremented when backward compatible changes are made.
• description, keywords, authormake it easier to find packages.
• license clarifies how you can use this package.

Other properties enable advanced configuration:

• main: specifies the module that “is” the package (explained later in this chapter).
• scripts: are commands that you can execute via npm run. For example, the script

test can be executed via npm run test.

For more information on package.json, consult the npm documentation.

27.9.1 Packages are installed inside a directory node_modules/

npm always installs packages inside a directory node_modules. There are usually many
of these directories. Which one npm uses, depends on the directory where one currently
is. For example, if we are inside a directory /tmp/a/b/, npm tries to find a node_modules
in the current directory, its parent directory, the parent directory of the parent, etc. In
other words, it searches the following chain of locations:

• /tmp/a/b/node_modules
• /tmp/a/node_modules
• /tmp/node_modules

When installing a package foo, npm uses the closest node_modules. If, for example, we
are inside /tmp/a/b/ and there is a node_modules in that directory, then npm puts the
package inside the directory:

/tmp/a/b/node_modules/foo/

When importing a module, we can use a special module specifier to tell Node.js that we
want to import it from an installed package. How exactly that works, is explained later.
For now, consider the following example:

https://semver.org
https://docs.npmjs.com/files/package.json

27.10 Naming modules 249

// /home/jane/proj/main.mjs
import * as theModule from 'the-package/the-module.mjs';

To find the-module.mjs (Node.js prefers the filename extension .mjs for ES modules),
Node.js walks up the node_module chain and searches the following locations:

• /home/jane/proj/node_modules/the-package/the-module.mjs
• /home/jane/node_modules/the-package/the-module.mjs
• /home/node_modules/the-package/the-module.mjs

27.9.2 Why can npm be used to install frontend libraries?
Finding installed modules in node_modules directories is only supported on Node.js. So
why can we also use npm to install libraries for browsers?
That is enabled via bundling tools, such as webpack, that compile and optimize code
before it is deployed online. During this compilation process, the code in npm packages
is adapted so that it works in browsers.

27.10 Naming modules
There are no established best practices for namingmodule files and the variables they are
imported into.
In this chapter, I’m using the following naming style:

• The names of module files are dash-cased and start with lowercase letters:
./my-module.mjs
./some-func.mjs

• The names of namespace imports are lowercased and camel-cased:
import * as myModule from './my-module.mjs';

• The names of default imports are lowercased and camel-cased:
import someFunc from './some-func.mjs';

What are the rationales behind this style?
• npm doesn’t allow uppercase letters in package names (source). Thus, we avoid
camel case, so that “local” files have names that are consistent with those of npm
packages. Using only lowercase letters also minimizes conflicts between file sys-
tems that are case-sensitive and file systems that aren’t: the former distinguish files
whose names have the same letters, but with different cases; the latter don’t.

• There are clear rules for translating dash-casedfile names to camel-cased JavaScript
variable names. Due to how we name namespace imports, these rules work for
both namespace imports and default imports.

I also like underscore-cased module file names because you can directly use these names
for namespace imports (without any translation):

import * as my_module from './my_module.mjs';

https://docs.npmjs.com/files/package.json#name

250 27 Modules

But that style does not work for default imports: I like underscore-casing for namespace
objects, but it is not a good choice for functions, etc.

27.11 Module specifiers
Module specifiers are the strings that identify modules. They work slightly differently in
browsers and Node.js. Before we can look at the differences, we need to learn about the
different categories of module specifiers.

27.11.1 Categories of module specifiers
In ES modules, we distinguish the following categories of specifiers. These categories
originated with CommonJS modules.

• Relative path: starts with a dot. Examples:
'./some/other/module.mjs'
'../../lib/counter.mjs'

• Absolute path: starts with a slash. Example:
'/home/jane/file-tools.mjs'

• URL: includes a protocol (technically, paths are URLs, too). Examples:
'https://example.com/some-module.mjs'
'file:///home/john/tmp/main.mjs'

• Bare path: does not start with a dot, a slash or a protocol, and consists of a single
filename without an extension. Examples:

'lodash'
'the-package'

• Deep import path: starts with a bare path and has at least one slash. Example:
'the-package/dist/the-module.mjs'

27.11.2 ES module specifiers in browsers
Browsers handle module specifiers as follows:

• Relative paths, absolute paths, and URLs work as expected. They all must point to
real files (in contrast to CommonJS, which lets you omit filename extensions and
more).

• The file name extensions of modules don’t matter, as long as they are served with
the content type text/javascript.

• How bare paths will end up being handled is not yet clear. You will probably
eventually be able to map them to other specifiers via lookup tables.

Note that bundling tools such as webpack, which combine modules into fewer files, are
often less strict with specifiers than browsers. That’s because they operate at build/-
compile time (not at runtime) and can search for files by traversing the file system.

27.11 Module specifiers 251

27.11.3 ES module specifiers on Node.js

Support for ES modules on Node.js is still new
You may have to switch it on via a command line flag. See the Node.js documenta-
tion for details.

Node.js handles module specifiers as follows:

• Relative paths are resolved as they are in web browsers – relative to the path of the
current module.

• Absolute paths are currently not supported. As a workaround, you can use URLs
that start with file:///. You can create such URLs via url.pathToFileURL().

• Only file: is supported as a protocol for URL specifiers.

• A bare path is interpreted as a package name and resolved relative to the closest
node_modules directory. Whatmodule should be loaded, is determined by looking
at property "main" of the package’s package.json (similarly to CommonJS).

• Deep import paths are also resolved relatively to the closest node_modules direc-
tory. They contain file names, so it is always clear which module is meant.

All specifiers, except bare paths, must refer to actual files. That is, ESM does not support
the following CommonJS features:

• CommonJS automatically adds missing filename extensions.

• CommonJS can import a directory foo if there is a foo/package.jsonwith a "main"
property.

• CommonJS can import a directory foo if there is a module foo/index.js.

All built-in Node.js modules are available via bare paths and have named ESM exports –
for example:

import * as path from 'path';
import {strict as assert} from 'assert';

assert.equal(
path.join('a/b/c', '../d'), 'a/b/d');

27.11.3.1 Filename extensions on Node.js

Node.js supports the following default filename extensions:

• .mjs for ES modules
• .cjs for CommonJS modules

The filename extension .js stands for either ESM or CommonJS.Which one it is is config-
ured via the “closest” package.json (in the current directory, the parent directory, etc.).
Using package.json in this manner is independent of packages.

https://nodejs.org/api/esm.html
https://nodejs.org/api/esm.html

252 27 Modules

In that package.json, there is a property "type", which has two settings:
• "commonjs" (the default): files with the extension .js or without an extension are
interpreted as CommonJS modules.

• "module": files with the extension .js or without an extension are interpreted as
ESM modules.

27.11.3.2 Interpreting non-file source code as either CommonJS or ESM
Not all source code executed by Node.js comes from files. You can also send it code via
stdin, --eval, and --print. The command line option --input-type lets you specify
how such code is interpreted:

• As CommonJS (the default): --input-type=commonjs
• As ESM: --input-type=module

27.12 Loading modules dynamically via import()
So far, the onlyway to import amodule has been via an import statement. That statement
has several limitations:

• Youmust use it at the top level of a module. That is, you can’t, for example, import
something when you are inside a block.

• The module specifier is always fixed. That is, you can’t change what you import
depending on a condition. And you can’t assemble a specifier dynamically.

The import() operator changes that. Let’s look at an example of it being used.

27.12.1 Example: loading a module dynamically
Consider the following files:

lib/my-math.mjs
main1.mjs
main2.mjs

We have already seen module my-math.mjs:
// Not exported, private to module
function times(a, b) {

return a * b;
}
export function square(x) {

return times(x, x);
}
export const LIGHTSPEED = 299792458;

This is what using import() looks like in main1.mjs:
const dir = './lib/';
const moduleSpecifier = dir + 'my-math.mjs';

27.12 Loading modules dynamically via import() 253

function loadConstant() {
return import(moduleSpecifier)
.then(myMath => {

const result = myMath.LIGHTSPEED;
assert.equal(result, 299792458);
return result;

});
}

Method .then() is part of Promises, a mechanism for handling asynchronous results,
which is covered later in this book.
Two things in this code weren’t possible before:

• We are importing inside a function (not at the top level).
• The module specifier comes from a variable.

Next, we’ll implement the exact same functionality in main2.mjs but via a so-called async
function, which provides nicer syntax for Promises.

const dir = './lib/';
const moduleSpecifier = dir + 'my-math.mjs';

async function loadConstant() {
const myMath = await import(moduleSpecifier);
const result = myMath.LIGHTSPEED;
assert.equal(result, 299792458);
return result;

}

Why is import() an operator and not a function?
Even though it works much like a function, import() is an operator: in order to
resolve module specifiers relatively to the current module, it needs to know from
which module it is invoked. A normal function cannot receive this information as
implicitly as an operator can. It would need, for example, a parameter.

27.12.2 Use cases for import()
27.12.2.1 Loading code on demand
Some functionality of web apps doesn’t have to be present when they start, it can be
loaded on demand. Then import() helps because you can put such functionality into
modules – for example:

button.addEventListener('click', event => {
import('./dialogBox.mjs')

.then(dialogBox => {
dialogBox.open();

})
.catch(error => {

254 27 Modules

/* Error handling */
})

});

27.12.2.2 Conditional loading of modules
We may want to load a module depending on whether a condition is true. For example,
a module with a polyfill that makes a new feature available on legacy platforms:

if (isLegacyPlatform()) {
import('./my-polyfill.mjs')

.then(···);
}

27.12.2.3 Computed module specifiers
For applications such as internationalization, it helps if you can dynamically compute
module specifiers:

import(`messages_${getLocale()}.mjs`)
.then(···);

27.13 Preview: import.meta.url
“import.meta” is an ECMAScript feature proposed by Domenic Denicola. The object
import.meta holds metadata for the current module.
Its most important property is import.meta.url, which contains a string with the URL
of the current module file. For example:

'https://example.com/code/main.mjs'

27.13.1 import.meta.url and class URL
Class URL is available via a global variable in browsers and onNode.js. You can look up its
full functionality in the Node.js documentation. When working with import.meta.url,
its constructor is especially useful:

new URL(input: string, base?: string|URL)

Parameter input contains the URL to be parsed. It can be relative if the second parameter,
base, is provided.
In other words, this constructor lets us resolve a relative path against a base URL:

> new URL('other.mjs', 'https://example.com/code/main.mjs').href
'https://example.com/code/other.mjs'
> new URL('../other.mjs', 'https://example.com/code/main.mjs').href
'https://example.com/other.mjs'

This is howwe get a URL instance that points to a file data.txt that sits next to the current
module:

https://github.com/tc39/proposal-import-meta
https://nodejs.org/api/url.html#url_class_url

27.13 Preview: import.meta.url 255

const urlOfData = new URL('data.txt', import.meta.url);

27.13.2 import.meta.url on Node.js
On Node.js, import.meta.url is always a string with a file: URL – for example:

'file:///Users/rauschma/my-module.mjs'

27.13.2.1 Example: reading a sibling file of a module

Many Node.js file system operations accept either strings with paths or instances of URL.
That enables us to read a sibling file data.txt of the current module:

import {promises as fs} from 'fs';

async function main() {
const urlOfData = new URL('data.txt', import.meta.url);
const str = await fs.readFile(urlOfData, {encoding: 'UTF-8'});
assert.equal(str, 'This is textual data.\n');

}
main();

main() is an async function, as explained in §41 “Async functions”.

fs.promises contains a Promise-based version of the fs API, which can be used with
async functions.

27.13.2.2 Converting between file: URLs and paths

The Node.js module url has two functions for converting between file: URLs and
paths:

• fileURLToPath(url: URL|string): string
Converts a file: URL to a path.

• pathToFileURL(path: string): URL
Converts a path to a file: URL.

If you need a path that can be used in the local file system, then property .pathname of
URL instances does not always work:

assert.equal(
new URL('file:///tmp/with%20space.txt').pathname,
'/tmp/with%20space.txt');

Therefore, it is better to use fileURLToPath():

import * as url from 'url';
assert.equal(

url.fileURLToPath('file:///tmp/with%20space.txt'),
'/tmp/with space.txt'); // result on Unix

Similarly, pathToFileURL() does more than just prepend 'file://' to an absolute path.

https://nodejs.org/api/fs.html#fs_fs_promises_api
https://nodejs.org/api/url.html

256 27 Modules

27.14 Polyfills: emulating native web platform features
(advanced)

Backends have polyfills, too
This section is about frontend development and web browsers, but similar ideas
apply to backend development.

Polyfills help with a conflict that we are facing when developing a web application in
JavaScript:

• On one hand, we want to use modern web platform features that make the app
better and/or development easier.

• On the other hand, the app should run on as many browsers as possible.
Given a web platform feature X:

• A polyfill for X is a piece of code. If it is executed on a platform that already has built-
in support for X, it does nothing. Otherwise, it makes the feature available on the
platform. In the latter case, the polyfilled feature is (mostly) indistinguishable from
a native implementation. In order to achieve that, the polyfill usuallymakes global
changes. For example, it may modify global data or configure a global module
loader. Polyfills are often packaged as modules.

– The term polyfillwas coined by Remy Sharp.
• A speculative polyfill is a polyfill for a proposed web platform feature (that is not
standardized, yet).

– Alternative term: prollyfill
• A replica of X is a library that reproduces the API and functionality of X locally.
Such a library exists independently of a native (and global) implementation of X.

– Replica is a new term introduced in this section. Alternative term: ponyfill
• There is also the term shim, but it doesn’t have a universally agreed upon definition.
It often means roughly the same as polyfill.

Every time our web applications starts, it must first execute all polyfills for features that
may not be available everywhere. Afterwards, we can be sure that those features are
available natively.

27.14.1 Sources of this section
• “What is a Polyfill?” by Remy Sharp
• Inspiration for the term replica: The Eiffel Tower in Las Vegas
• Useful clarification of “polyfill” and related terms: “Polyfills and the evolution of
the Web”. Edited by Andrew Betts.

Quiz
See quiz app.

https://remysharp.com/2010/10/08/what-is-a-polyfill
https://remysharp.com/2010/10/08/what-is-a-polyfill
https://en.wikipedia.org/wiki/Paris_Las_Vegas
https://www.w3.org/2001/tag/doc/polyfills/
https://www.w3.org/2001/tag/doc/polyfills/

Chapter 28

Single objects

Contents
28.1 What is an object? . 258

28.1.1 Roles of objects: record vs. dictionary 259
28.2 Objects as records . 259

28.2.1 Object literals: properties . 259
28.2.2 Object literals: property value shorthands 260
28.2.3 Getting properties . 260
28.2.4 Setting properties . 260
28.2.5 Object literals: methods . 261
28.2.6 Object literals: accessors . 261

28.3 Spreading into object literals (...) 262
28.3.1 Use case for spreading: copying objects 263
28.3.2 Use case for spreading: default values for missing properties . 263
28.3.3 Use case for spreading: non-destructively changing properties 264

28.4 Methods . 264
28.4.1 Methods are properties whose values are functions 264
28.4.2 .call(): specifying this via a parameter 265
28.4.3 .bind(): pre-filling this and parameters of functions 266
28.4.4 this pitfall: extracting methods 267
28.4.5 this pitfall: accidentally shadowing this 268
28.4.6 Avoiding the pitfalls of this 270
28.4.7 The value of this in various contexts 270

28.5 Objects as dictionaries (advanced) 271
28.5.1 Arbitrary fixed strings as property keys 271
28.5.2 Computed property keys . 272
28.5.3 The in operator: is there a property with a given key? 273
28.5.4 Deleting properties . 273
28.5.5 Listing property keys . 273
28.5.6 Listing property values via Object.values() 275

257

258 28 Single objects

28.5.7 Listing property entries via Object.entries() 275
28.5.8 Properties are listed deterministically 275
28.5.9 Assembling objects via Object.fromEntries() 276
28.5.10 The pitfalls of using an object as a dictionary 278

28.6 Standard methods (advanced) . 279
28.6.1 .toString() . 279
28.6.2 .valueOf() . 279

28.7 Advanced topics . 279
28.7.1 Object.assign() . 279
28.7.2 Freezing objects . 280
28.7.3 Property attributes and property descriptors 280

In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in
four steps. This chapter covers step 1; the next chapter covers steps 2–4. The steps are
(fig. 28.1):

1. Single objects (this chapter): How do objects, JavaScript’s basic OOP building
blocks, work in isolation?

2. Prototype chains (next chapter): Each object has a chain of zero or more prototype
objects. Prototypes are JavaScript’s core inheritance mechanism.

3. Classes (next chapter): JavaScript’s classes are factories for objects. The relationship
between a class and its instances is based on prototypal inheritance.

4. Subclassing (next chapter): The relationship between a subclass and its superclass
is also based on prototypal inheritance.

ƒmthd

data
__proto__

4
ƒ

data
mthd

4

MyClass

data
mthd

SubClass

subData
subMthd

SuperClass

superData
superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 28.1: This book introduces object-oriented programming in JavaScript in four
steps.

28.1 What is an object?
In JavaScript:

• An object is a set of properties (key-value entries).
• A property key can only be a string or a symbol.

28.2 Objects as records 259

28.1.1 Roles of objects: record vs. dictionary
Objects play two roles in JavaScript:

• Records: Objects-as-records have a fixed number of properties, whose keys are
known at development time. Their values can have different types.

• Dictionaries: Objects-as-dictionaries have a variable number of properties, whose
keys are not known at development time. All of their values have the same type.

These roles influence how objects are explained in this chapter:

• First, we’ll explore objects-as-records. Even though property keys are strings or
symbols under the hood, they will appear as fixed identifiers to us, in this part of
the chapter.

• Later, we’ll explore objects-as-dictionaries. Note that Maps are usually better dic-
tionaries than objects. However, some of the operations that we’ll encounter, can
also be useful for objects-as-records.

28.2 Objects as records
Let’s first explore the role record of objects.

28.2.1 Object literals: properties
Object literals are one way of creating objects-as-records. They are a stand-out feature of
JavaScript: you can directly create objects – no need for classes! This is an example:

const jane = {
first: 'Jane',
last: 'Doe', // optional trailing comma

};

In the example, we created an object via an object literal, which starts and endswith curly
braces {}. Inside it, we defined two properties (key-value entries):

• The first property has the key first and the value 'Jane'.
• The second property has the key last and the value 'Doe'.

We will later see other ways of specifying property keys, but with this way of specifying
them, they must follow the rules of JavaScript variable names. For example, you can
use first_name as a property key, but not first-name). However, reserved words are
allowed:

const obj = {
if: true,
const: true,

};

In order to check the effects of various operations on objects, we’ll occasionally use Ob-
ject.keys() in this part of the chapter. It lists property keys:

260 28 Single objects

> Object.keys({a:1, b:2})
['a', 'b']

28.2.2 Object literals: property value shorthands
Whenever the value of a property is defined via a variable name and that name is the
same as the key, you can omit the key.

function createPoint(x, y) {
return {x, y};

}
assert.deepEqual(

createPoint(9, 2),
{ x: 9, y: 2 }

);

28.2.3 Getting properties
This is how you get (read) a property (line A):

const jane = {
first: 'Jane',
last: 'Doe',

};

// Get property .first
assert.equal(jane.first, 'Jane'); // (A)

Getting an unknown property produces undefined:

assert.equal(jane.unknownProperty, undefined);

28.2.4 Setting properties
This is how you set (write to) a property:

const obj = {
prop: 1,

};
assert.equal(obj.prop, 1);
obj.prop = 2; // (A)
assert.equal(obj.prop, 2);

We just changed an existing property via setting. If we set an unknown property, we
create a new entry:

const obj = {}; // empty object
assert.deepEqual(

Object.keys(obj), []);

obj.unknownProperty = 'abc';

28.2 Objects as records 261

assert.deepEqual(
Object.keys(obj), ['unknownProperty']);

28.2.5 Object literals: methods
The following code shows how to create the method .says() via an object literal:

const jane = {
first: 'Jane', // data property
says(text) { // method

return `${this.first} says “${text}”`; // (A)
}, // comma as separator (optional at end)

};
assert.equal(jane.says('hello'), 'Jane says “hello”');

During the method call jane.says('hello'), jane is called the receiver of the method
call and assigned to the special variable this. That enables method .says() to access the
sibling property .first in line A.

28.2.6 Object literals: accessors
There are two kinds of accessors in JavaScript:

• A getter is a method-like entity that is invoked by getting a property.
• A setter is a method-like entity that is invoked by setting a property.

28.2.6.1 Getters
A getter is created by prefixing a method definition with the modifier get:

const jane = {
first: 'Jane',
last: 'Doe',
get full() {

return `${this.first} ${this.last}`;
},

};

assert.equal(jane.full, 'Jane Doe');
jane.first = 'John';
assert.equal(jane.full, 'John Doe');

28.2.6.2 Setters
A setter is created by prefixing a method definition with the modifier set:

const jane = {
first: 'Jane',
last: 'Doe',
set full(fullName) {

const parts = fullName.split(' ');

262 28 Single objects

this.first = parts[0];
this.last = parts[1];

},
};

jane.full = 'Richard Roe';
assert.equal(jane.first, 'Richard');
assert.equal(jane.last, 'Roe');

Exercise: Creating an object via an object literal
exercises/single-objects/color_point_object_test.mjs

28.3 Spreading into object literals (...)
Inside a function call, spreading (...) turns the iterated values of an iterable object into
arguments.

Inside an object literal, a spread property adds the properties of another object to the current
one:

> const obj = {foo: 1, bar: 2};
> {...obj, baz: 3}
{ foo: 1, bar: 2, baz: 3 }

If property keys clash, the property that is mentioned last “wins”:

> const obj = {foo: 1, bar: 2, baz: 3};
> {...obj, foo: true}
{ foo: true, bar: 2, baz: 3 }
> {foo: true, ...obj}
{ foo: 1, bar: 2, baz: 3 }

All values are spreadable, even undefined and null:

> {...undefined}
{}
> {...null}
{}
> {...123}
{}
> {...'abc'}
{ '0': 'a', '1': 'b', '2': 'c' }
> {...['a', 'b']}
{ '0': 'a', '1': 'b' }

Property .length of strings and of Arrays is hidden from this kind of operation (it is not
enumerable; see §28.7.3 “Property attributes and property descriptors” for more informa-
tion).

28.3 Spreading into object literals (...) 263

28.3.1 Use case for spreading: copying objects
You can use spreading to create a copy of an object original:

const copy = {...original};

Caveat – copying is shallow: copy is a fresh object with duplicates of all properties (key-
value entries) of original. But if property values are objects, then those are not copied
themselves; they are shared between original and copy. Let’s look at an example:

const original = { a: 1, b: {foo: true} };
const copy = {...original};

The first level of copy is really a copy: If you change any properties at that level, it does
not affect the original:

copy.a = 2;
assert.deepEqual(

original, { a: 1, b: {foo: true} }); // no change

However, deeper levels are not copied. For example, the value of .b is shared between
original and copy. Changing .b in the copy also changes it in the original.

copy.b.foo = false;
assert.deepEqual(

original, { a: 1, b: {foo: false} });

JavaScript doesn’t have built-in support for deep copying
Deep copies of objects (where all levels are copied) are notoriously difficult to do
generically. Therefore, JavaScript does not have a built-in operation for them (for
now). If you need such an operation, you have to implement it yourself.

28.3.2 Use case for spreading: default values for missing properties
If one of the inputs of your code is an object with data, you can make properties optional
by specifying default values that are used if those properties are missing. One technique
for doing so is via an object whose properties contain the default values. In the following
example, that object is DEFAULTS:

const DEFAULTS = {foo: 'a', bar: 'b'};
const providedData = {foo: 1};

const allData = {...DEFAULTS, ...providedData};
assert.deepEqual(allData, {foo: 1, bar: 'b'});

The result, the object allData, is created by copying DEFAULTS and overriding its proper-
ties with those of providedData.

But you don’t need an object to specify the default values; you can also specify them
inside the object literal, individually:

264 28 Single objects

const providedData = {foo: 1};

const allData = {foo: 'a', bar: 'b', ...providedData};
assert.deepEqual(allData, {foo: 1, bar: 'b'});

28.3.3 Use case for spreading: non-destructively changing properties
So far, we have encountered one way of changing a property .foo of an object: We set it
(line A) and mutate the object. That is, this way of changing a property is destructive.

const obj = {foo: 'a', bar: 'b'};
obj.foo = 1; // (A)
assert.deepEqual(obj, {foo: 1, bar: 'b'});

With spreading, we can change .foo non-destructively – we make a copy of obj where
.foo has a different value:

const obj = {foo: 'a', bar: 'b'};
const updatedObj = {...obj, foo: 1};
assert.deepEqual(updatedObj, {foo: 1, bar: 'b'});

Exercise: Non-destructively updating a property via spreading (fixed key)
exercises/single-objects/update_name_test.mjs

28.4 Methods
28.4.1 Methods are properties whose values are functions
Let’s revisit the example that was used to introduce methods:

const jane = {
first: 'Jane',
says(text) {

return `${this.first} says “${text}”`;
},

};

Somewhat surprisingly, methods are functions:

assert.equal(typeof jane.says, 'function');

Why is that? We learned in the chapter on callable values, that ordinary functions play
several roles. Method is one of those roles. Therefore, under the hood, jane roughly looks
as follows.

const jane = {
first: 'Jane',
says: function (text) {

return `${this.first} says “${text}”`;

28.4 Methods 265

},
};

28.4.2 .call(): specifying this via a parameter
Remember that each function someFunc is also an object and therefore has methods. One
suchmethod is .call() – it lets you call a functionwhile specifying this via a parameter:

someFunc.call(thisValue, arg1, arg2, arg3);

28.4.2.1 Methods and .call()

If you make a method call, this is an implicit parameter that is filled in via the receiver
of the call:

const obj = {
method(x) {

assert.equal(this, obj); // implicit parameter
assert.equal(x, 'a');

},
};

obj.method('a'); // receiver is `obj`

The method call in the last line sets up this as follows:
obj.method.call(obj, 'a');

As an aside, that means that there are actually two different dot operators:
1. One for accessing properties: obj.prop
2. One for making method calls: obj.prop()

They are different in that (2) is not just (1) followed by the function call operator (). In-
stead, (2) additionally specifies a value for this.

28.4.2.2 Functions and .call()

If you function-call an ordinary function, its implicit parameter this is also provided – it
is implicitly set to undefined:

function func(x) {
assert.equal(this, undefined); // implicit parameter
assert.equal(x, 'a');

}

func('a');

The method call in the last line sets up this as follows:
func.call(undefined, 'a');

this being set to undefined during a function call, indicates that it is a feature that is only
needed during a method call.

266 28 Single objects

Next, we’ll examine the pitfalls of using this. Before we can do that, we need one more
tool: method .bind() of functions.

28.4.3 .bind(): pre-filling this and parameters of functions
.bind() is another method of function objects. This method is invoked as follows:

const boundFunc = someFunc.bind(thisValue, arg1, arg2);

.bind() returns a new function boundFunc(). Calling that function invokes someFunc()
with this set to thisValue and these parameters: arg1, arg2, followed by the parameters
of boundFunc().

That is, the following two function calls are equivalent:

boundFunc('a', 'b')
someFunc.call(thisValue, arg1, arg2, 'a', 'b')

28.4.3.1 An alternative to .bind()

Another way of pre-filling this and parameters is via an arrow function:

const boundFunc2 = (...args) =>
someFunc.call(thisValue, arg1, arg2, ...args);

28.4.3.2 An implementation of .bind()

Considering the previous section, .bind() can be implemented as a real function as fol-
lows:

function bind(func, thisValue, ...boundArgs) {
return (...args) =>

func.call(thisValue, ...boundArgs, ...args);
}

28.4.3.3 Example: binding a real function

Using .bind() for real functions is somewhat unintuitive because you have to provide
a value for this. Given that it is undefined during function calls, it is usually set to
undefined or null.

In the following example, we create add8(), a function that has one parameter, by binding
the first parameter of add() to 8.

function add(x, y) {
return x + y;

}

const add8 = add.bind(undefined, 8);
assert.equal(add8(1), 9);

28.4 Methods 267

28.4.3.4 Example: binding a method
In the following code, we turn method .says() into the stand-alone function func():

const jane = {
first: 'Jane',
says(text) {

return `${this.first} says “${text}”`; // (A)
},

};

const func = jane.says.bind(jane, 'hello');
assert.equal(func(), 'Jane says “hello”');

Setting this to jane via .bind() is crucial here. Otherwise, func()wouldn’t work prop-
erly because this is used in line A.

28.4.4 this pitfall: extracting methods
We now know quite a bit about functions andmethods and are ready to take a look at the
biggest pitfall involving methods and this: function-calling a method extracted from an
object can fail if you are not careful.
In the following example, we fail when we extract method jane.says(), store it in the
variable func, and function-call func().

const jane = {
first: 'Jane',
says(text) {

return `${this.first} says “${text}”`;
},

};
const func = jane.says; // extract the method
assert.throws(

() => func('hello'), // (A)
{

name: 'TypeError',
message: "Cannot read property 'first' of undefined",

});

The function call in line A is equivalent to:
assert.throws(

() => jane.says.call(undefined, 'hello'), // `this` is undefined!
{

name: 'TypeError',
message: "Cannot read property 'first' of undefined",

});

So how do we fix this? We need to use .bind() to extract method .says():
const func2 = jane.says.bind(jane);
assert.equal(func2('hello'), 'Jane says “hello”');

268 28 Single objects

The .bind() ensures that this is always janewhen we call func().

You can also use arrow functions to extract methods:

const func3 = text => jane.says(text);
assert.equal(func3('hello'), 'Jane says “hello”');

28.4.4.1 Example: extracting a method

The following is a simplified version of code that youmay see in actualweb development:

class ClickHandler {
constructor(id, elem) {

this.id = id;
elem.addEventListener('click', this.handleClick); // (A)

}
handleClick(event) {

alert('Clicked ' + this.id);
}

}

In line A, we don’t extract the method .handleClick() properly. Instead, we should do:

elem.addEventListener('click', this.handleClick.bind(this));

Exercise: Extracting a method
exercises/single-objects/method_extraction_exrc.mjs

28.4.5 this pitfall: accidentally shadowing this

Accidentally shadowing this is only an issue with ordinary functions
Arrow functions don’t shadow this.

Consider the following problem: when you are inside an ordinary function, you can’t
access the this of the surrounding scope because the ordinary function has its own this.
In other words, a variable in an inner scope hides a variable in an outer scope. That is
called shadowing. The following code is an example:

const prefixer = {
prefix: '==> ',
prefixStringArray(stringArray) {

return stringArray.map(
function (x) {
return this.prefix + x; // (A)

});
},

};

28.4 Methods 269

assert.throws(
() => prefixer.prefixStringArray(['a', 'b']),
/^TypeError: Cannot read property 'prefix' of undefined$/);

In line A, we want to access the this of .prefixStringArray(). But we can’t since the
surrounding ordinary function has its own this that shadows (blocks access to) the this of
themethod. The value of the former this is undefined due to the callback being function-
called. That explains the error message.

The simplest way to fix this problem is via an arrow function, which doesn’t have its own
this and therefore doesn’t shadow anything:

const prefixer = {
prefix: '==> ',
prefixStringArray(stringArray) {

return stringArray.map(
(x) => {
return this.prefix + x;

});
},

};
assert.deepEqual(

prefixer.prefixStringArray(['a', 'b']),
['==> a', '==> b']);

We can also store this in a different variable (line A), so that it doesn’t get shadowed:

prefixStringArray(stringArray) {
const that = this; // (A)
return stringArray.map(

function (x) {
return that.prefix + x;

});
},

Another option is to specify a fixed this for the callback via .bind() (line A):

prefixStringArray(stringArray) {
return stringArray.map(

function (x) {
return this.prefix + x;

}.bind(this)); // (A)
},

Lastly, .map() lets us specify a value for this (line A) that it uses when invoking the
callback:

prefixStringArray(stringArray) {
return stringArray.map(

function (x) {
return this.prefix + x;

},

270 28 Single objects

this); // (A)
},

28.4.6 Avoiding the pitfalls of this
We have seen two big this-related pitfalls:

1. Extracting methods
2. Accidentally shadowing this

One simple rule helps avoid the second pitfall:

“Avoid the keyword function”: Never use ordinary functions, only arrow
functions (for real functions) and method definitions.

Following this rule has two benefits:

• It prevents the second pitfall because ordinary functions are never used as real
functions.

• this becomes easier to understand because it will only appear inside methods
(never inside ordinary functions). That makes it clear that this is an OOP feature.

However, even though I don’t use (ordinary) function expressions anymore, I do like func-
tion declarations syntactically. You can use them safely if you don’t refer to this inside
them. The static checking tool ESLint can warn you during development when you do
this wrong via a built-in rule.

Alas, there is no simple way around the first pitfall: whenever you extract a method, you
have to be careful and do it properly – for example, by binding this.

28.4.7 The value of this in various contexts
What is the value of this in various contexts?

Inside a callable entity, the value of this depends on how the callable entity is invoked
and what kind of callable entity it is:

• Function call:
– Ordinary functions: this === undefined (in strict mode)
– Arrow functions: this is same as in surrounding scope (lexical this)

• Method call: this is receiver of call
• new: this refers to newly created instance

You can also access this in all common top-level scopes:

• <script> element: this === globalThis
• ECMAScript modules: this === undefined
• CommonJS modules: this === module.exports

However, I like to pretend that you can’t access this in top-level scopes because top-level
this is confusing and rarely useful.

https://eslint.org/docs/rules/no-invalid-this

28.5 Objects as dictionaries (advanced) 271

28.5 Objects as dictionaries (advanced)
Objects work best as records. But before ES6, JavaScript did not have a data structure for
dictionaries (ES6 brought Maps). Therefore, objects had to be used as dictionaries, which
imposed a signficant constraint: keys had to be strings (symbols were also introduced
with ES6).
Wefirst look at features of objects that are related to dictionaries but also useful for objects-
as-records. This section concludes with tips for actually using objects as dictionaries
(spoiler: use Maps if you can).

28.5.1 Arbitrary fixed strings as property keys
So far, we have always used objects as records. Property keys were fixed tokens that had
to be valid identifiers and internally became strings:

const obj = {
mustBeAnIdentifier: 123,

};

// Get property
assert.equal(obj.mustBeAnIdentifier, 123);

// Set property
obj.mustBeAnIdentifier = 'abc';
assert.equal(obj.mustBeAnIdentifier, 'abc');

As a next step, we’ll go beyond this limitation for property keys: In this section, we’ll use
arbitrary fixed strings as keys. In the next subsection, we’ll dynamically compute keys.
Two techniques allow us to use arbitrary strings as property keys.
First, when creating property keys via object literals, we can quote property keys (with
single or double quotes):

const obj = {
'Can be any string!': 123,

};

Second, when getting or setting properties, we can use square bracketswith strings inside
them:

// Get property
assert.equal(obj['Can be any string!'], 123);

// Set property
obj['Can be any string!'] = 'abc';
assert.equal(obj['Can be any string!'], 'abc');

You can also use these techniques for methods:
const obj = {

'A nice method'() {

272 28 Single objects

return 'Yes!';
},

};

assert.equal(obj['A nice method'](), 'Yes!');

28.5.2 Computed property keys
So far, property keys were always fixed strings inside object literals. In this section we
learn how to dynamically compute property keys. That enables us to use either arbitrary
strings or symbols.
The syntax of dynamically computed property keys in object literals is inspired by dy-
namically accessing properties. That is, we can use square brackets to wrap expressions:

const obj = {
['Hello world!']: true,
['f'+'o'+'o']: 123,
[Symbol.toStringTag]: 'Goodbye', // (A)

};

assert.equal(obj['Hello world!'], true);
assert.equal(obj.foo, 123);
assert.equal(obj[Symbol.toStringTag], 'Goodbye');

The main use case for computed keys is having symbols as property keys (line A).
Note that the square brackets operator for getting and setting properties works with ar-
bitrary expressions:

assert.equal(obj['f'+'o'+'o'], 123);
assert.equal(obj['==> foo'.slice(-3)], 123);

Methods can have computed property keys, too:
const methodKey = Symbol();
const obj = {

[methodKey]() {
return 'Yes!';

},
};

assert.equal(obj[methodKey](), 'Yes!');

For the remainder of this chapter, we’ll mostly use fixed property keys again (because
they are syntactically more convenient). But all features are also available for arbitrary
strings and symbols.

Exercise: Non-destructively updating a property via spreading (computed
key)

28.5 Objects as dictionaries (advanced) 273

exercises/single-objects/update_property_test.mjs

28.5.3 The in operator: is there a property with a given key?
The in operator checks if an object has a property with a given key:

const obj = {
foo: 'abc',
bar: false,

};

assert.equal('foo' in obj, true);
assert.equal('unknownKey' in obj, false);

28.5.3.1 Checking if a property exists via truthiness
You can also use a truthiness check to determine if a property exists:

assert.equal(
obj.foo ? 'exists' : 'does not exist',
'exists');

assert.equal(
obj.unknownKey ? 'exists' : 'does not exist',
'does not exist');

The previous checkswork because obj.foo is truthy and because reading amissing prop-
erty returns undefined (which is falsy).
There is, however, one important caveat: truthiness checks fail if the property exists, but
has a falsy value (undefined, null, false, 0, "", etc.):

assert.equal(
obj.bar ? 'exists' : 'does not exist',
'does not exist'); // should be: 'exists'

28.5.4 Deleting properties
You can delete properties via the delete operator:

const obj = {
foo: 123,

};
assert.deepEqual(Object.keys(obj), ['foo']);

delete obj.foo;

assert.deepEqual(Object.keys(obj), []);

28.5.5 Listing property keys

274 28 Single objects

Table 28.1: Standard librarymethods for listing own (non-inherited) prop-
erty keys. All of them return Arrays with strings and/or symbols.

enumerable non-e. string symbol
Object.keys() ✔ ✔
Object.getOwnPropertyNames() ✔ ✔ ✔
Object.getOwnPropertySymbols() ✔ ✔ ✔
Reflect.ownKeys() ✔ ✔ ✔ ✔

Each of the methods in tbl. 28.1 returns an Array with the own property keys of the
parameter. In the names of the methods, you can see that the following distinction is
made:

• A property key can be either a string or a symbol.
• A property name is a property key whose value is a string.
• A property symbol is a property key whose value is a symbol.

The next section describes the term enumerable and demonstrates each of the methods.

28.5.5.1 Enumerability

Enumerability is an attribute of a property. Non-enumerable properties are ignored by
some operations – for example, by Object.keys() (see tbl. 28.1) and by spread properties.
By default, most properties are enumerable. The next example shows how to change that.
It also demonstrates the various ways of listing property keys.

const enumerableSymbolKey = Symbol('enumerableSymbolKey');
const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

// We create enumerable properties via an object literal
const obj = {

enumerableStringKey: 1,
[enumerableSymbolKey]: 2,

}

// For non-enumerable properties, we need a more powerful tool
Object.defineProperties(obj, {

nonEnumStringKey: {
value: 3,
enumerable: false,

},
[nonEnumSymbolKey]: {

value: 4,
enumerable: false,

},
});

assert.deepEqual(

28.5 Objects as dictionaries (advanced) 275

Object.keys(obj),
['enumerableStringKey']);

assert.deepEqual(
Object.getOwnPropertyNames(obj),
['enumerableStringKey', 'nonEnumStringKey']);

assert.deepEqual(
Object.getOwnPropertySymbols(obj),
[enumerableSymbolKey, nonEnumSymbolKey]);

assert.deepEqual(
Reflect.ownKeys(obj),
[

'enumerableStringKey', 'nonEnumStringKey',
enumerableSymbolKey, nonEnumSymbolKey,

]);

Object.defineProperties() is explained later in this chapter.

28.5.6 Listing property values via Object.values()
Object.values() lists the values of all enumerable properties of an object:

const obj = {foo: 1, bar: 2};
assert.deepEqual(

Object.values(obj),
[1, 2]);

28.5.7 Listing property entries via Object.entries()
Object.entries() lists key-value pairs of enumerable properties. Each pair is encoded
as a two-element Array:

const obj = {foo: 1, bar: 2};
assert.deepEqual(

Object.entries(obj),
[

['foo', 1],
['bar', 2],

]);

Exercise: Object.entries()
exercises/single-objects/find_key_test.mjs

28.5.8 Properties are listed deterministically
Own (non-inherited) properties of objects are always listed in the following order:

1. Properties with string keys that contain integer indices (that includes Array in-
dices):
In ascending numeric order

276 28 Single objects

2. Remaining properties with string keys:
In the order in which they were added

3. Properties with symbol keys:
In the order in which they were added

The following example demonstrates how property keys are sorted according to these
rules:

> Object.keys({b:0,a:0, 10:0,2:0})
['2', '10', 'b', 'a']

The order of properties
The ECMAScript specification describes in more detail how properties are ordered.

28.5.9 Assembling objects via Object.fromEntries()
Given an iterable over [key, value] pairs, Object.fromEntries() creates an object:

assert.deepEqual(
Object.fromEntries([['foo',1], ['bar',2]]),
{

foo: 1,
bar: 2,

}
);

Object.fromEntries() does the opposite of Object.entries().
To demonstrate both, we’ll use them to implement two tool functions from the library
Underscore in the next subsubsections.

28.5.9.1 Example: pick(object, ...keys)

pick returns a copy of object that only has those properties whose keys are mentioned
as arguments:

const address = {
street: 'Evergreen Terrace',
number: '742',
city: 'Springfield',
state: 'NT',
zip: '49007',

};
assert.deepEqual(

pick(address, 'street', 'number'),
{

street: 'Evergreen Terrace',
number: '742',

}
);

https://tc39.github.io/ecma262/#sec-ordinaryownpropertykeys
https://underscorejs.org
https://underscorejs.org/#pick

28.5 Objects as dictionaries (advanced) 277

We can implement pick() as follows:
function pick(object, ...keys) {

const filteredEntries = Object.entries(object)
.filter(([key, _value]) => keys.includes(key));

return Object.fromEntries(filteredEntries);
}

28.5.9.2 Example: invert(object)
invert returns a copy of objectwhere the keys and values of all properties are swapped:

assert.deepEqual(
invert({a: 1, b: 2, c: 3}),
{1: 'a', 2: 'b', 3: 'c'}

);

We can implement invert() like this:
function invert(object) {

const mappedEntries = Object.entries(object)
.map(([key, value]) => [value, key]);

return Object.fromEntries(mappedEntries);
}

28.5.9.3 A simple implementation of Object.fromEntries()
The following function is a simplified version of Object.fromEntries():

function fromEntries(iterable) {
const result = {};
for (const [key, value] of iterable) {

let coercedKey;
if (typeof key === 'string' || typeof key === 'symbol') {

coercedKey = key;
} else {

coercedKey = String(key);
}
result[coercedKey] = value;

}
return result;

}

28.5.9.4 A polyfill for Object.fromEntries()
The npm package object.fromentries is a polyfill for Object.entries(): it installs its
own implementation if that method doesn’t exist on the current platform.

Exercise: Object.entries() and Object.fromEntries()

https://underscorejs.org/#invert
https://github.com/es-shims/Object.fromEntries

278 28 Single objects

exercises/single-objects/omit_properties_test.mjs

28.5.10 The pitfalls of using an object as a dictionary
If you use plain objects (created via object literals) as dictionaries, you have to look out
for two pitfalls.

The first pitfall is that the in operator also finds inherited properties:

const dict = {};
assert.equal('toString' in dict, true);

Wewant dict to be treated as empty, but the in operator detects the properties it inherits
from its prototype, Object.prototype.

The second pitfall is that you can’t use the property key __proto__ because it has special
powers (it sets the prototype of the object):

const dict = {};

dict['__proto__'] = 123;
// No property was added to dict:
assert.deepEqual(Object.keys(dict), []);

So how do we avoid these pitfalls?

• Whenever you can, use Maps. They are the best solution for dictionaries.
• If you can’t, use a library for objects-as-dictionaries that does everything safely.
• If you can’t, use an object without a prototype.

The following code demonstrates using objects without prototypes as dictionaries:

const dict = Object.create(null); // no prototype

assert.equal('toString' in dict, false); // (A)

dict['__proto__'] = 123;
assert.deepEqual(Object.keys(dict), ['__proto__']);

We avoided both pitfalls: First, a property without a prototype does not inherit any
properties (line A). Second, in modern JavaScript, __proto__ is implemented via Ob-
ject.prototype. That means that it is switched off if Object.prototype is not in the
prototype chain.

Exercise: Using an object as a dictionary
exercises/single-objects/simple_dict_test.mjs

28.6 Standard methods (advanced) 279

28.6 Standard methods (advanced)
Object.prototype defines several standardmethods that can be overridden to configure
how an object is treated by the language. Two important ones are:

• .toString()
• .valueOf()

28.6.1 .toString()

.toString() determines how objects are converted to strings:

> String({toString() { return 'Hello!' }})
'Hello!'
> String({})
'[object Object]'

28.6.2 .valueOf()

.valueOf() determines how objects are converted to numbers:

> Number({valueOf() { return 123 }})
123
> Number({})
NaN

28.7 Advanced topics
The following subsections give brief overviews of a few advanced topics.

28.7.1 Object.assign()

Object.assign() is a tool method:

Object.assign(target, source_1, source_2, ···)

This expression assigns all properties of source_1 to target, then all properties of
source_2, etc. At the end, it returns target – for example:

const target = { foo: 1 };

const result = Object.assign(
target,
{bar: 2},
{baz: 3, bar: 4});

assert.deepEqual(
result, { foo: 1, bar: 4, baz: 3 });

// target was modified and returned:
assert.equal(result, target);

280 28 Single objects

The use cases for Object.assign() are similar to those for spread properties. In a way, it
spreads destructively.

28.7.2 Freezing objects
Object.freeze(obj) makes obj completely immutable: You can’t change properties,
add properties, or change its prototype – for example:

const frozen = Object.freeze({ x: 2, y: 5 });
assert.throws(

() => { frozen.x = 7 },
{

name: 'TypeError',
message: /^Cannot assign to read only property 'x'/,

});

There is one caveat: Object.freeze(obj) freezes shallowly. That is, only the properties
of obj are frozen but not objects stored in properties.

28.7.3 Property attributes and property descriptors
Just as objects are composed of properties, properties are composed of attributes. The
value of a property is only one of several attributes. Others include:

• writable: Is it possible to change the value of the property?
• enumerable: Is the property considered by Object.keys(), spreading, etc.?

When you are using one of the operations for handling property attributes, attributes
are specified via property descriptors: objects where each property represents one attribute.
For example, this is how you read the attributes of a property obj.foo:

const obj = { foo: 123 };
assert.deepEqual(

Object.getOwnPropertyDescriptor(obj, 'foo'),
{

value: 123,
writable: true,
enumerable: true,
configurable: true,

});

And this is how you set the attributes of a property obj.bar:
const obj = {

foo: 1,
bar: 2,

};

assert.deepEqual(Object.keys(obj), ['foo', 'bar']);

// Hide property `bar` from Object.keys()
Object.defineProperty(obj, 'bar', {

28.7 Advanced topics 281

enumerable: false,
});

assert.deepEqual(Object.keys(obj), ['foo']);

Enumerability is covered in greater detail earlier in this chapter. For more information
on property attributes and property descriptors, consult Speaking JavaScript.

Quiz
See quiz app.

http://speakingjs.com/es5/ch17.html#property_attributes

282 28 Single objects

Chapter 29

Prototype chains and classes

Contents
29.1 Prototype chains . 284

29.1.1 JavaScript’s operations: all properties vs. own properties . . . 285
29.1.2 Pitfall: only the first member of a prototype chain is mutated . 285
29.1.3 Tips for working with prototypes (advanced) 286
29.1.4 Sharing data via prototypes 287

29.2 Classes . 289
29.2.1 A class for persons . 289
29.2.2 Classes under the hood . 290
29.2.3 Class definitions: prototype properties 291
29.2.4 Class definitions: static properties 292
29.2.5 The instanceof operator . 292
29.2.6 Why I recommend classes . 292

29.3 Private data for classes . 293
29.3.1 Private data: naming convention 293
29.3.2 Private data: WeakMaps . 294
29.3.3 More techniques for private data 295

29.4 Subclassing . 295
29.4.1 Subclasses under the hood (advanced) 296
29.4.2 instanceof in more detail (advanced) 297
29.4.3 Prototype chains of built-in objects (advanced) 297
29.4.4 Dispatched vs. direct method calls (advanced) 300
29.4.5 Mixin classes (advanced) . 301

29.5 FAQ: objects . 303
29.5.1 Why do objects preserve the insertion order of properties? . . . 303

In this book, JavaScript’s style of object-oriented programming (OOP) is introduced in
four steps. This chapter covers steps 2–4, the previous chapter covers step 1. The steps
are (fig. 29.1):

283

284 29 Prototype chains and classes

1. Single objects (previous chapter): Howdo objects, JavaScript’s basic OOPbuilding
blocks, work in isolation?

2. Prototype chains (this chapter): Each object has a chain of zero or more prototype
objects. Prototypes are JavaScript’s core inheritance mechanism.

3. Classes (this chapter): JavaScript’s classes are factories for objects. The relationship
between a class and its instances is based on prototypal inheritance.

4. Subclassing (this chapter): The relationship between a subclass and its superclass is
also based on prototypal inheritance.

ƒmthd

data
__proto__

4
ƒ

data
mthd

4

MyClass

data
mthd

SubClass

subData
subMthd

SuperClass

superData
superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 29.1: This book introduces object-oriented programming in JavaScript in four
steps.

29.1 Prototype chains
Prototypes are JavaScript’s only inheritance mechanism: each object has a prototype that
is either null or an object. In the latter case, the object inherits all of the prototype’s
properties.
In an object literal, you can set the prototype via the special property __proto__:

const proto = {
protoProp: 'a',

};
const obj = {

__proto__: proto,
objProp: 'b',

};

// obj inherits .protoProp:
assert.equal(obj.protoProp, 'a');
assert.equal('protoProp' in obj, true);

Given that a prototype object can have a prototype itself, we get a chain of objects – the
so-called prototype chain. That means that inheritance gives us the impression that we are
dealing with single objects, but we are actually dealing with chains of objects.
Fig. 29.2 shows what the prototype chain of obj looks like.
Non-inherited properties are called own properties. obj has one own property, .objProp.

29.1 Prototype chains 285

__proto__
protoProp 'a'

proto

. . .

objProp
__proto__

'b'

obj

Figure 29.2: obj starts a chain of objects that continues with proto and other objects.

29.1.1 JavaScript’s operations: all properties vs. own properties
Some operations consider all properties (own and inherited) – for example, getting prop-
erties:

> const obj = { foo: 1 };
> typeof obj.foo // own
'number'
> typeof obj.toString // inherited
'function'

Other operations only consider own properties – for example, Object.keys():

> Object.keys(obj)
['foo']

Read on for another operation that also only considers own properties: setting properties.

29.1.2 Pitfall: only the first member of a prototype chain is mutated
One aspect of prototype chains that may be counter-intuitive is that setting any property
via an object – even an inherited one – only changes that very object – never one of the
prototypes.

Consider the following object obj:

const proto = {
protoProp: 'a',

};
const obj = {

__proto__: proto,
objProp: 'b',

};

In the next code snippet, we set the inherited property obj.protoProp (line A). That

286 29 Prototype chains and classes

“changes” it by creating an own property: When reading obj.protoProp, the own prop-
erty is found first and its value overrides the value of the inherited property.

// In the beginning, obj has one own property
assert.deepEqual(Object.keys(obj), ['objProp']);

obj.protoProp = 'x'; // (A)

// We created a new own property:
assert.deepEqual(Object.keys(obj), ['objProp', 'protoProp']);

// The inherited property itself is unchanged:
assert.equal(proto.protoProp, 'a');

// The own property overrides the inherited property:
assert.equal(obj.protoProp, 'x');

The prototype chain of obj is depicted in fig. 29.3.

protoProp 'a'
__proto__

proto

. . .

'b'
__proto__
objProp
protoProp 'x'

obj

Figure 29.3: The own property .protoProp of obj overrides the property inherited from
proto.

29.1.3 Tips for working with prototypes (advanced)
29.1.3.1 Best practice: avoid __proto__, except in object literals

I recommend to avoid the pseudo-property __proto__: Aswewill see later, not all objects
have it.

However, __proto__ in object literals is different. There, it is a built-in feature and always
available.

The recommended ways of getting and setting prototypes are:

• The best way to get a prototype is via the following method:

29.1 Prototype chains 287

Object.getPrototypeOf(obj: Object) : Object

• The best way to set a prototype is when creating an object – via __proto__ in an
object literal or via:

Object.create(proto: Object) : Object

If you have to, you can use Object.setPrototypeOf() to change the prototype of
an existing object. But that may affect performance negatively.

This is how these features are used:
const proto1 = {};
const proto2 = {};

const obj = Object.create(proto1);
assert.equal(Object.getPrototypeOf(obj), proto1);

Object.setPrototypeOf(obj, proto2);
assert.equal(Object.getPrototypeOf(obj), proto2);

29.1.3.2 Check: is an object a prototype of another one?
So far, “p is a prototype of o” alwaysmeant “p is a direct prototype of o”. But it can also be
usedmore loosely andmean that p is in the prototype chain of o. That looser relationship
can be checked via:

p.isPrototypeOf(o)

For example:
const a = {};
const b = {__proto__: a};
const c = {__proto__: b};

assert.equal(a.isPrototypeOf(b), true);
assert.equal(a.isPrototypeOf(c), true);

assert.equal(a.isPrototypeOf(a), false);
assert.equal(c.isPrototypeOf(a), false);

29.1.4 Sharing data via prototypes
Consider the following code:

const jane = {
name: 'Jane',
describe() {

return 'Person named '+this.name;
},

};
const tarzan = {

name: 'Tarzan',

288 29 Prototype chains and classes

describe() {
return 'Person named '+this.name;

},
};

assert.equal(jane.describe(), 'Person named Jane');
assert.equal(tarzan.describe(), 'Person named Tarzan');

We have two objects that are very similar. Both have two properties whose names are
.name and .describe. Additionally, method .describe() is the same. How canwe avoid
duplicating that method?
We can move it to an object PersonProto and make that object a prototype of both jane
and tarzan:

const PersonProto = {
describe() {

return 'Person named ' + this.name;
},

};
const jane = {

__proto__: PersonProto,
name: 'Jane',

};
const tarzan = {

__proto__: PersonProto,
name: 'Tarzan',

};

The name of the prototype reflects that both jane and tarzan are persons.

__proto__
name 'Jane' name

__proto__
'Tarzan'

describe function() {···}

jane tarzan

PersonProto

Figure 29.4: Objects jane and tarzan share method .describe(), via their common pro-
totype PersonProto.

Fig. 29.4 illustrates how the three objects are connected: The objects at the bottom now
contain the properties that are specific to jane and tarzan. The object at the top contains
the properties that are shared between them.
When you make the method call jane.describe(), this points to the receiver of that
method call, jane (in the bottom-left corner of the diagram). That’s why the method still
works. tarzan.describe() works similarly.

29.2 Classes 289

assert.equal(jane.describe(), 'Person named Jane');
assert.equal(tarzan.describe(), 'Person named Tarzan');

29.2 Classes
We are now ready to take on classes, which are basically a compact syntax for setting up
prototype chains. Under the hood, JavaScript’s classes are unconventional. But that is
something you rarely see when working with them. They should normally feel familiar
to people who have used other object-oriented programming languages.

29.2.1 A class for persons
We have previously worked with jane and tarzan, single objects representing persons.
Let’s use a class declaration to implement a factory for person objects:

class Person {
constructor(name) {

this.name = name;
}
describe() {

return 'Person named '+this.name;
}

}

jane and tarzan can now be created via new Person():

const jane = new Person('Jane');
assert.equal(jane.name, 'Jane');
assert.equal(jane.describe(), 'Person named Jane');

const tarzan = new Person('Tarzan');
assert.equal(tarzan.name, 'Tarzan');
assert.equal(tarzan.describe(), 'Person named Tarzan');

Class Person has two methods:

• The normal method .describe()
• The special method .constructor() which is called directly after a new instance
has been created and initializes that instance. It receives the arguments that are
passed to the new operator (after the class name). If you don’t need any arguments
to set up a new instance, you can omit the constructor.

29.2.1.1 Class expressions

There are two kinds of class definitions (ways of defining classes):

• Class declarations, which we have seen in the previous section.
• Class expressions, which we’ll see next.

Class expressions can be anonymous and named:

290 29 Prototype chains and classes

// Anonymous class expression
const Person = class { ··· };

// Named class expression
const Person = class MyClass { ··· };

The name of a named class expression works similarly to the name of a named function
expression.
This was a first look at classes. We’ll explore more features soon, but first we need to
learn the internals of classes.

29.2.2 Classes under the hood
There is a lot going on under the hood of classes. Let’s look at the diagram for jane
(fig. 29.5).

__proto__
name 'Jane'

describe function() {...}
constructor

jane

Person.prototype

prototype

Person

Figure 29.5: The class Person has the property .prototype that points to an object that is
the prototype of all instances of Person. jane is one such instance.

The main purpose of class Person is to set up the prototype chain on the right (jane,
followed by Person.prototype). It is interesting to note that both constructs inside class
Person (.constructor and .describe()) created properties for Person.prototype, not
for Person.
The reason for this slightly odd approach is backward compatibility: prior to classes,
constructor functions (ordinary functions, invoked via the new operator) were often used
as factories for objects. Classes are mostly better syntax for constructor functions and
therefore remain compatible with old code. That explains why classes are functions:

> typeof Person
'function'

In this book, I use the terms constructor (function) and class interchangeably.
It is easy to confuse .__proto__ and .prototype. Hopefully, fig. 29.5 makes it clear how
they differ:

29.2 Classes 291

• .__proto__ is a pseudo-property for accessing the prototype of an object.
• .prototype is a normal property that is only special due to how the new operator
uses it. The name is not ideal: Person.prototype does not point to the prototype
of Person, it points to the prototype of all instances of Person.

29.2.2.1 Person.prototype.constructor (advanced)
There is onedetail in fig. 29.5 thatwehaven’t looked at, yet: Person.prototype.constructor
points back to Person:

> Person.prototype.constructor === Person
true

This setup also exists due to backward compatibility. But it has two additional benefits.
First, each instance of a class inherits property .constructor. Therefore, given an in-
stance, you can make “similar” objects using it:

const jane = new Person('Jane');

const cheeta = new jane.constructor('Cheeta');
// cheeta is also an instance of Person
// (the instanceof operator is explained later)
assert.equal(cheeta instanceof Person, true);

Second, you can get the name of the class that created a given instance:
const tarzan = new Person('Tarzan');

assert.equal(tarzan.constructor.name, 'Person');

29.2.3 Class definitions: prototype properties
All constructs in the body of the following class declaration create properties of
Foo.prototype.

class Foo {
constructor(prop) {

this.prop = prop;
}
protoMethod() {

return 'protoMethod';
}
get protoGetter() {

return 'protoGetter';
}

}

Let’s examine them in order:
• .constructor() is called after creating a new instance of Foo to set up that instance.
• .protoMethod() is a normal method. It is stored in Foo.prototype.
• .protoGetter is a getter that is stored in Foo.prototype.

292 29 Prototype chains and classes

The following interaction uses class Foo:
> const foo = new Foo(123);
> foo.prop
123

> foo.protoMethod()
'protoMethod'
> foo.protoGetter
'protoGetter'

29.2.4 Class definitions: static properties
All constructs in the body of the following class declaration create so-called static proper-
ties – properties of Bar itself.

class Bar {
static staticMethod() {

return 'staticMethod';
}
static get staticGetter() {

return 'staticGetter';
}

}

The static method and the static getter are used as follows:
> Bar.staticMethod()
'staticMethod'
> Bar.staticGetter
'staticGetter'

29.2.5 The instanceof operator
The instanceof operator tells you if a value is an instance of a given class:

> new Person('Jane') instanceof Person
true
> ({}) instanceof Person
false
> ({}) instanceof Object
true
> [] instanceof Array
true

We’ll explore the instanceof operator in more detail later, after we have looked at sub-
classing.

29.2.6 Why I recommend classes
I recommend using classes for the following reasons:

29.3 Private data for classes 293

• Classes are a common standard for object creation and inheritance that is now
widely supported across frameworks (React, Angular, Ember, etc.). This is an im-
provement to how things were before, when almost every framework had its own
inheritance library.

• They help tools such as IDEs and type checkers with their work and enable new
features there.

• If you come from another language to JavaScript and are used to classes, then you
can get started more quickly.

• JavaScript engines optimize them. That is, code that uses classes is almost always
faster than code that uses a custom inheritance library.

• You can subclass built-in constructor functions such as Error.

That doesn’t mean that classes are perfect:

• There is a risk of overdoing inheritance.

• There is a risk of putting toomuch functionality in classes (when some of it is often
better put in functions).

• How they work superficially and under the hood is quite different. In other words,
there is a disconnect between syntax and semantics. Two examples are:

– A method definition inside a class C creates a method in the object
C.prototype.

– Classes are functions.

The motivation for the disconnect is backward compatibility. Thankfully, the dis-
connect causes few problems in practice; you are usually OK if you go along with
what classes pretend to be.

Exercise: Writing a class
exercises/proto-chains-classes/point_class_test.mjs

29.3 Private data for classes
This section describes techniques for hiding some of the data of an object from the outside.
We discuss them in the context of classes, but they also work for objects created directly,
e.g., via object literals.

29.3.1 Private data: naming convention
The first technique makes a property private by prefixing its name with an underscore.
This doesn’t protect the property in any way; it merely signals to the outside: “You don’t
need to know about this property.”

In the following code, the properties ._counter and ._action are private.

294 29 Prototype chains and classes

class Countdown {
constructor(counter, action) {

this._counter = counter;
this._action = action;

}
dec() {

this._counter--;
if (this._counter === 0) {

this._action();
}

}
}

// The two properties aren’t really private:
assert.deepEqual(

Object.keys(new Countdown()),
['_counter', '_action']);

With this technique, you don’t get any protection and private names can clash. On the
plus side, it is easy to use.

29.3.2 Private data: WeakMaps
Another technique is to useWeakMaps. How exactly that works is explained in the chap-
ter on WeakMaps. This is a preview:

const _counter = new WeakMap();
const _action = new WeakMap();

class Countdown {
constructor(counter, action) {

_counter.set(this, counter);
_action.set(this, action);

}
dec() {

let counter = _counter.get(this);
counter--;
_counter.set(this, counter);
if (counter === 0) {

_action.get(this)();
}

}
}

// The two pseudo-properties are truly private:
assert.deepEqual(

Object.keys(new Countdown()),
[]);

This technique offers you considerable protection from outside access and there can’t be

29.4 Subclassing 295

any name clashes. But it is also more complicated to use.

29.3.3 More techniques for private data
This book explains the most important techniques for private data in classes. There will
also probably soon be built-in support for it. Consult the ECMAScript proposal “Class
Public Instance Fields & Private Instance Fields” for details.
A few additional techniques are explained in Exploring ES6.

29.4 Subclassing
Classes can also subclass (“extend”) existing classes. As an example, the following class
Employee subclasses Person:

class Person {
constructor(name) {

this.name = name;
}
describe() {

return `Person named ${this.name}`;
}
static logNames(persons) {

for (const person of persons) {
console.log(person.name);

}
}

}

class Employee extends Person {
constructor(name, title) {

super(name);
this.title = title;

}
describe() {

return super.describe() +
` (${this.title})`;

}
}

const jane = new Employee('Jane', 'CTO');
assert.equal(

jane.describe(),
'Person named Jane (CTO)');

Two comments:
• Inside a .constructor()method, youmust call the super-constructor via super()
before you can access this. That’s because this doesn’t exist before the super-
constructor is called (this phenomenon is specific to classes).

https://github.com/tc39/proposal-class-fields
https://github.com/tc39/proposal-class-fields
https://exploringjs.com/es6/ch_classes.html#sec_private-data-for-classes

296 29 Prototype chains and classes

• Staticmethods are also inherited. For example, Employee inherits the staticmethod
.logNames():

> 'logNames' in Employee
true

Exercise: Subclassing
exercises/proto-chains-classes/color_point_class_test.mjs

29.4.1 Subclasses under the hood (advanced)

Person Person.prototype

Employee Employee.prototype

jane

__proto__

__proto__

prototype

prototype

Object.prototype

__proto__

__proto__

Function.prototype

__proto__

Figure 29.6: These are the objects that make up class Person and its subclass, Employee.
The left column is about classes. The right column is about the Employee instance jane
and its prototype chain.

The classes Person and Employee from the previous section aremade up of several objects
(fig. 29.6). One key insight for understanding how these objects are related is that there
are two prototype chains:

• The instance prototype chain, on the right.
• The class prototype chain, on the left.

29.4.1.1 The instance prototype chain (right column)

The instance prototype chain starts with jane and continues with Employee.prototype
and Person.prototype. In principle, the prototype chain ends at this point, but we get
one more object: Object.prototype. This prototype provides services to virtually all
objects, which is why it is included here, too:

> Object.getPrototypeOf(Person.prototype) === Object.prototype
true

29.4 Subclassing 297

29.4.1.2 The class prototype chain (left column)

In the class prototype chain, Employee comes first, Person next. Afterward, the chain
continues with Function.prototype, which is only there because Person is a function
and functions need the services of Function.prototype.

> Object.getPrototypeOf(Person) === Function.prototype
true

29.4.2 instanceof in more detail (advanced)
We have not yet seen how instanceof really works. Given the expression:

x instanceof C

How does instanceof determine if x is an instance of C (or a subclass of C)? It does so by
checking if C.prototype is in the prototype chain of x. That is, the following expression
is equivalent:

C.prototype.isPrototypeOf(x)

If we go back to fig. 29.6, we can confirm that the prototype chain does lead us to the
following correct answers:

> jane instanceof Employee
true
> jane instanceof Person
true
> jane instanceof Object
true

29.4.3 Prototype chains of built-in objects (advanced)
Next, we’ll use our knowledge of subclassing to understand the prototype chains of a
few built-in objects. The following tool function p() helps us with our explorations.

const p = Object.getPrototypeOf.bind(Object);

We extracted method .getPrototypeOf() of Object and assigned it to p.

29.4.3.1 The prototype chain of {}

Let’s start by examining plain objects:

> p({}) === Object.prototype
true
> p(p({})) === null
true

Fig. 29.7 shows a diagram for this prototype chain. We can see that {} really is an instance
of Object – Object.prototype is in its prototype chain.

298 29 Prototype chains and classes

Object.prototype

{}

__proto__

null

__proto__

Figure 29.7: The prototype chain of an object created via an object literal starts with that
object, continues with Object.prototype, and ends with null.

29.4.3.2 The prototype chain of []

What does the prototype chain of an Array look like?

> p([]) === Array.prototype
true
> p(p([])) === Object.prototype
true
> p(p(p([]))) === null
true

Object.prototype

Array.prototype

[]

__proto__

__proto__

null

__proto__

Figure 29.8: The prototype chain of an Array has these members: the Array instance,
Array.prototype, Object.prototype, null.

This prototype chain (visualized in fig. 29.8) tells us that an Array object is an instance of
Array, which is a subclass of Object.

29.4 Subclassing 299

29.4.3.3 The prototype chain of function () {}

Lastly, the prototype chain of an ordinary function tells us that all functions are objects:
> p(function () {}) === Function.prototype
true
> p(p(function () {})) === Object.prototype
true

29.4.3.4 Objects that aren’t instances of Object
An object is only an instance of Object if Object.prototype is in its prototype chain.
Most objects created via various literals are instances of Object:

> ({}) instanceof Object
true
> (() => {}) instanceof Object
true
> /abc/ug instanceof Object
true

Objects that don’t have prototypes are not instances of Object:
> ({ __proto__: null }) instanceof Object
false

Object.prototype ends most prototype chains. Its prototype is null, which means it
isn’t an instance of Object either:

> Object.prototype instanceof Object
false

29.4.3.5 How exactly does the pseudo-property .__proto__ work?
The pseudo-property .__proto__ is implemented by class Object via a getter and a setter.
It could be implemented like this:

class Object {
get __proto__() {

return Object.getPrototypeOf(this);
}
set __proto__(other) {

Object.setPrototypeOf(this, other);
}
// ···

}

That means that you can switch .__proto__ off by creating an object that doesn’t have
Object.prototype in its prototype chain (see the previous section):

> '__proto__' in {}
true
> '__proto__' in { __proto__: null }
false

300 29 Prototype chains and classes

29.4.4 Dispatched vs. direct method calls (advanced)
Let’s examine how method calls work with classes. We are revisiting jane from earlier:

class Person {
constructor(name) {

this.name = name;
}
describe() {

return 'Person named '+this.name;
}

}
const jane = new Person('Jane');

Fig. 29.9 has a diagram with jane’s prototype chain.

__proto__
describe function() {···}

Person.prototype

. . .

name
__proto__

'Jane'

jane

Figure 29.9: The prototype chain of jane starts with jane and continues with Per-
son.prototype.

Normal method calls are dispatched – the method call jane.describe() happens in two
steps:

• Dispatch: In the prototype chain of jane, find the first property whose key is 'de-
scribe' and retrieve its value.

const func = jane.describe;

• Call: Call the value, while setting this to jane.

func.call(jane);

This way of dynamically looking for a method and invoking it is called dynamic dispatch.

You can make the same method call directly, without dispatching:

Person.prototype.describe.call(jane)

This time, we directly point to the method via Person.prototype.describe and don’t
search for it in the prototype chain. We also specify this differently via .call().

29.4 Subclassing 301

Note that this always points to the beginning of a prototype chain. That enables .de-
scribe() to access .name.

29.4.4.1 Borrowing methods

Direct method calls become useful when you are working with methods of Ob-
ject.prototype. For example, Object.prototype.hasOwnProperty(k) checks if this
has a non-inherited property whose key is k:

> const obj = { foo: 123 };
> obj.hasOwnProperty('foo')
true
> obj.hasOwnProperty('bar')
false

However, in the prototype chain of an object, there may be another property with the key
'hasOwnProperty' that overrides the method in Object.prototype. Then a dispatched
method call doesn’t work:

> const obj = { hasOwnProperty: true };
> obj.hasOwnProperty('bar')
TypeError: obj.hasOwnProperty is not a function

The workaround is to use a direct method call:

> Object.prototype.hasOwnProperty.call(obj, 'bar')
false
> Object.prototype.hasOwnProperty.call(obj, 'hasOwnProperty')
true

This kind of direct method call is often abbreviated as follows:

> ({}).hasOwnProperty.call(obj, 'bar')
false
> ({}).hasOwnProperty.call(obj, 'hasOwnProperty')
true

This patternmay seem inefficient, butmost engines optimize this pattern, so performance
should not be an issue.

29.4.5 Mixin classes (advanced)
JavaScript’s class system only supports single inheritance. That is, each class can have at
most one superclass. Oneway around this limitation is via a technique calledmixin classes
(short: mixins).

The idea is as follows: Let’s say we want a class C to inherit from two superclasses S1 and
S2. That would be multiple inheritance, which JavaScript doesn’t support.

Our workaround is to turn S1 and S2 into mixins, factories for subclasses:

const S1 = (Sup) => class extends Sup { /*···*/ };
const S2 = (Sup) => class extends Sup { /*···*/ };

302 29 Prototype chains and classes

Each of these two functions returns a class that extends a given superclass Sup. We create
class C as follows:

class C extends S2(S1(Object)) {
/*···*/

}

We now have a class C that extends a class S2 that extends a class S1 that extends Object
(which most classes do implicitly).

29.4.5.1 Example: a mixin for brand management

We implement a mixin Branded that has helper methods for setting and getting the brand
of an object:

const Branded = (Sup) => class extends Sup {
setBrand(brand) {

this._brand = brand;
return this;

}
getBrand() {

return this._brand;
}

};

We use this mixin to implement brand management for a class Car:

class Car extends Branded(Object) {
constructor(model) {

super();
this._model = model;

}
toString() {

return `${this.getBrand()} ${this._model}`;
}

}

The following code confirms that the mixin worked: Car has method .setBrand() of
Branded.

const modelT = new Car('Model T').setBrand('Ford');
assert.equal(modelT.toString(), 'Ford Model T');

29.4.5.2 The benefits of mixins

Mixins free us from the constraints of single inheritance:

• The same class can extend a single superclass and zero or more mixins.
• The same mixin can be used by multiple classes.

29.5 FAQ: objects 303

29.5 FAQ: objects
29.5.1 Why do objects preserve the insertion order of properties?
In principle, objects are unordered. The main reason for ordering properties is so that
operations that list entries, keys, or values are deterministic. That helps, e.g., with testing.

Quiz
See quiz app.

304 29 Prototype chains and classes

Part VII

Collections

305

Chapter 30

Synchronous iteration

Contents
30.1 What is synchronous iteration about? 307
30.2 Core iteration constructs: iterables and iterators 308
30.3 Iterating manually . 309

30.3.1 Iterating over an iterable via while 309
30.4 Iteration in practice . 310

30.4.1 Iterating over Arrays . 310
30.4.2 Iterating over Sets . 310

30.5 Quick reference: synchronous iteration 311
30.5.1 Iterable data sources . 311
30.5.2 Iterating constructs . 311

30.1 What is synchronous iteration about?
Synchronous iteration is a protocol (interfaces plus rules for using them) that connects two
groups of entities in JavaScript:

• Data sources: On one hand, data comes in all shapes and sizes. In JavaScript’s
standard library, you have the linear data structure Array, the ordered collection
Set (elements are ordered by time of addition), the ordered dictionaryMap (entries
are ordered by time of addition), and more. In libraries, you may find tree-shaped
data structures and more.

• Data consumers: On the other hand, you have a whole class of constructs and
algorithms that only need to access their input sequentially: one value at a time,
until all values were visited. Examples include the for-of loop and spreading
into function calls (via ...).

The iteration protocol connects these two groups via the interface Iterable: data sources
deliver their contents sequentially “through it”; data consumers get their input via it.

307

308 30 Synchronous iteration

Data consumers Interface

for-of loop

Iterable

spreading

Data sources

Arrays

Maps

Strings

Figure 30.1: Data consumers such as the for-of loop use the interface Iterable. Data
sources such as Arrays implement that interface.

Fig. 30.1 illustrates how iterationworks: data consumers use the interface Iterable; data
sources implement it.

The JavaScript way of implementing interfaces
In JavaScript, an object implements an interface if it has all the methods that it de-
scribes. The interfaces mentioned in this chapter only exist in the ECMAScript spec-
ification.

Both sources and consumers of data profit from this arrangement:
• If you develop a new data structure, you only need to implement Iterable and a
raft of tools can immediately be applied to it.

• If you write code that uses iteration, it automatically works with many sources of
data.

30.2 Core iteration constructs: iterables and iterators
Two roles (described by interfaces) form the core of iteration (fig. 30.2):

• An iterable is an object whose contents can be traversed sequentially.
• An iterator is the pointer used for the traversal.

[Symbol.iterator]()
···

Iterable:
traversable data structure

next()

Iterator:
pointer for traversing iterable

returns

Figure 30.2: Iteration has two main interfaces: Iterable and Iterator. The former has
a method that returns the latter.

These are type definitions (in TypeScript’s notation) for the interfaces of the iteration pro-
tocol:

interface Iterable<T> {

30.3 Iterating manually 309

[Symbol.iterator]() : Iterator<T>;
}

interface Iterator<T> {
next() : IteratorResult<T>;

}

interface IteratorResult<T> {
value: T;
done: boolean;

}

The interfaces are used as follows:

• You ask an Iterable for an iterator via the methodwhose key is Symbol.iterator.
• The Iterator returns the iterated values via its method .next().
• The values are not returned directly, but wrapped in objects with two properties:

– .value is the iterated value.
– .done indicates if the end of the iteration has been reached yet. It is true after
the last iterated value and false beforehand.

30.3 Iterating manually
This is an example of using the iteration protocol:

const iterable = ['a', 'b'];

// The iterable is a factory for iterators:
const iterator = iterable[Symbol.iterator]();

// Call .next() until .done is true:
assert.deepEqual(

iterator.next(), { value: 'a', done: false });
assert.deepEqual(

iterator.next(), { value: 'b', done: false });
assert.deepEqual(

iterator.next(), { value: undefined, done: true });

30.3.1 Iterating over an iterable via while
The following code demonstrates how to use a while loop to iterate over an iterable:

function logAll(iterable) {
const iterator = iterable[Symbol.iterator]();
while (true) {

const {value, done} = iterator.next();
if (done) break;
console.log(value);

}

310 30 Synchronous iteration

}

logAll(['a', 'b']);
// Output:
// 'a'
// 'b'

Exercise: Using sync iteration manually
exercises/sync-iteration-use/sync_iteration_manually_exrc.mjs

30.4 Iteration in practice
We have seen how to use the iteration protocol manually, and it is relatively cumbersome.
But the protocol is not meant to be used directly – it is meant to be used via higher-level
language constructs built on top of it. This section shows what that looks like.

30.4.1 Iterating over Arrays
JavaScript’s Arrays are iterable. That enables us to use the for-of loop:

const myArray = ['a', 'b', 'c'];

for (const x of myArray) {
console.log(x);

}
// Output:
// 'a'
// 'b'
// 'c'

Destructuring via Array patterns (explained later) also uses iteration under the hood:

const [first, second] = myArray;
assert.equal(first, 'a');
assert.equal(second, 'b');

30.4.2 Iterating over Sets
JavaScript’s Set data structure is iterable. That means for-of works:

const mySet = new Set().add('a').add('b').add('c');

for (const x of mySet) {
console.log(x);

}
// Output:
// 'a'

30.5 Quick reference: synchronous iteration 311

// 'b'
// 'c'

As does Array-destructuring:
const [first, second] = mySet;
assert.equal(first, 'a');
assert.equal(second, 'b');

30.5 Quick reference: synchronous iteration
30.5.1 Iterable data sources
The following built-in data sources are iterable:

• Arrays
• Strings
• Maps
• Sets
• (Browsers: DOM data structures)

To iterate over the properties of objects, you need helpers such as Object.keys() and
Object.entries(). That is necessary because properties exist at a different level that is
independent of the level of data structures.

30.5.2 Iterating constructs
The following constructs are based on iteration:

• Destructuring via an Array pattern:
const [x,y] = iterable;

• The for-of loop:
for (const x of iterable) { /*···*/ }

• Array.from():
const arr = Array.from(iterable);

• Spreading (via ...) into function calls and Array literals:
func(...iterable);
const arr = [...iterable];

• new Map() and new Set():
const m = new Map(iterableOverKeyValuePairs);
const s = new Set(iterableOverElements);

• Promise.all() and Promise.race():
const promise1 = Promise.all(iterableOverPromises);
const promise2 = Promise.race(iterableOverPromises);

312 30 Synchronous iteration

• yield*:
function* generatorFunction() {

yield* iterable;
}

Quiz
See quiz app.

Chapter 31

Arrays (Array)

Contents
31.1 The two roles of Arrays in JavaScript 314
31.2 Basic Array operations . 314

31.2.1 Creating, reading, writing Arrays 314
31.2.2 The .length of an Array . 315
31.2.3 Clearing an Array . 315
31.2.4 Spreading into Array literals 316
31.2.5 Arrays: listing indices and entries 316
31.2.6 Is a value an Array? . 317

31.3 for-of and Arrays . 317
31.3.1 for-of: iterating over elements 317
31.3.2 for-of: iterating over [index, element] pairs 318

31.4 Array-like objects . 318
31.5 Converting iterable and Array-like values to Arrays 319

31.5.1 Converting iterables to Arrays via spreading (...) 319
31.5.2 Converting iterables and Array-like objects to Arrays via Ar-

ray.from() (advanced) . 319
31.6 Creating and filling Arrays with arbitrary lengths 320

31.6.1 Do you need to create an emptyArray that you’ll fill completely
later on? . 320

31.6.2 Do you need to create an Array filled with a primitive value? . 320
31.6.3 Do you need to create an Array filled with objects? 321
31.6.4 Do you need to create a range of integers? 321
31.6.5 Use a Typed Array if the elements are all integers or all floats . 321

31.7 Multidimensional Arrays . 321
31.8 More Array features (advanced) . 322

31.8.1 Array indices are (slightly special) property keys 322
31.8.2 Arrays are dictionaries and can have holes 323

31.9 Adding and removing elements (destructively and non-destructively) 325

313

314 31 Arrays (Array)

31.9.1 Prepending elements and Arrays 325
31.9.2 Appending elements and Arrays 326
31.9.3 Removing elements . 326

31.10Methods: iteration and transformation (.find(), .map(), .filter(),
etc.) . 327
31.10.1 Callbacks for iteration and transformation methods 327
31.10.2 Searching elements: .find(), .findIndex() 328
31.10.3 .map(): copy while giving elements new values 328
31.10.4 .flatMap(): mapping to zero or more values 329
31.10.5 .filter(): only keep some of the elements 331
31.10.6 .reduce(): deriving a value from an Array (advanced) 331

31.11.sort(): sorting Arrays . 334
31.11.1 Customizing the sort order . 335
31.11.2 Sorting numbers . 335
31.11.3 Sorting objects . 336

31.12Quick reference: Array<T> . 336
31.12.1 new Array() . 336
31.12.2 Static methods of Array . 336
31.12.3Methods of Array<T>.prototype 337
31.12.4 Sources . 344

31.1 The two roles of Arrays in JavaScript
Arrays play two roles in JavaScript:

• Tuples: Arrays-as-tuples have a fixed number of indexed elements. Each of those
elements can have a different type.

• Sequences: Arrays-as-sequences have a variable number of indexed elements.
Each of those elements has the same type.

In practice, these two roles are often mixed.
Notably, Arrays-as-sequences are so flexible that you can use them as (traditional) arrays,
stacks, and queues (see exercise later in this chapter).

31.2 Basic Array operations
31.2.1 Creating, reading, writing Arrays
The best way to create an Array is via an Array literal:

const arr = ['a', 'b', 'c'];

The Array literal starts and ends with square brackets []. It creates an Array with three
elements: 'a', 'b', and 'c'.
To read an Array element, you put an index in square brackets (indices start at zero):

assert.equal(arr[0], 'a');

31.2 Basic Array operations 315

To change an Array element, you assign to an Array with an index:
arr[0] = 'x';
assert.deepEqual(arr, ['x', 'b', 'c']);

The range of Array indices is 32 bits (excluding the maximum length): [0, 232−1)

31.2.2 The .length of an Array
Every Array has a property .length that can be used to both read and change(!) the
number of elements in an Array.
The length of an Array is always the highest index plus one:

> const arr = ['a', 'b'];
> arr.length
2

If you write to the Array at the index of the length, you append an element:
> arr[arr.length] = 'c';
> arr
['a', 'b', 'c']
> arr.length
3

Another way of (destructively) appending an element is via the Array method .push():
> arr.push('d');
> arr
['a', 'b', 'c', 'd']

If you set .length, you are pruning the Array by removing elements:
> arr.length = 1;
> arr
['a']

31.2.3 Clearing an Array
To clear (empty) an Array, you can either set its .length to zero:

const arr = ['a', 'b', 'c'];
arr.length = 0;
assert.deepEqual(arr, []);

or you can assign a new empty Array to the variable storing the Array:
let arr = ['a', 'b', 'c'];
arr = [];
assert.deepEqual(arr, []);

The latter approach has the advantage of not affecting other locations that point to the
same Array. If, however, you do want to reset a shared Array for everyone, then you
need the former approach.

316 31 Arrays (Array)

Exercise: Removing empty lines via .push()
exercises/arrays/remove_empty_lines_push_test.mjs

31.2.4 Spreading into Array literals
Inside an Array literal, a spread element consists of three dots (...) followed by an expres-
sion. It results in the expression being evaluated and then iterated over. Each iterated
value becomes an additional Array element – for example:

> const iterable = ['b', 'c'];
> ['a', ...iterable, 'd']
['a', 'b', 'c', 'd']

That means that we can use spreading to create a copy of an Array:

const original = ['a', 'b', 'c'];
const copy = [...original];

Spreading is also convenient for concatenating Arrays (and other iterables) into Arrays:

const arr1 = ['a', 'b'];
const arr2 = ['c', 'd'];

const concatenated = [...arr1, ...arr2, 'e'];
assert.deepEqual(

concatenated,
['a', 'b', 'c', 'd', 'e']);

Due to spreading using iteration, it only works if the value is iterable:

> [...'abc'] // strings are iterable
['a', 'b', 'c']
> [...123]
TypeError: number 123 is not iterable
> [...undefined]
TypeError: undefined is not iterable

Spreading into Array literals is shallow
Similar to spreading into object literals, spreading into Array literals creates shallow
copies. That is, nested Arrays are not copied.

31.2.5 Arrays: listing indices and entries
Method .keys() lists the indices of an Array:

const arr = ['a', 'b'];
assert.deepEqual(

31.3 for-of and Arrays 317

[...arr.keys()], // (A)
[0, 1]);

.keys() returns an iterable. In line A, we spread to obtain an Array.

Listing Array indices is different from listing properties. The former produces numbers;
the latter produces stringified numbers (in addition to non-index property keys):

const arr = ['a', 'b'];
arr.prop = true;

assert.deepEqual(
Object.keys(arr),
['0', '1', 'prop']);

Method .entries() lists the contents of an Array as [index, element] pairs:

const arr = ['a', 'b'];
assert.deepEqual(

[...arr.entries()],
[[0, 'a'], [1, 'b']]);

31.2.6 Is a value an Array?
Following are two ways of checking if a value is an Array:

> [] instanceof Array
true
> Array.isArray([])
true

instanceof is usually fine. You need Array.isArray() if a valuemay come from another
realm. Roughly, a realm is an instance of JavaScript’s global scope. Some realms are iso-
lated from each other (e.g., WebWorkers in browsers), but there are also realms between
which you can move data – for example, same-origin iframes in browsers. x instanceof
Array checks the prototype chain of x and therefore returns false if x is an Array from
another realm.

typeof categorizes Arrays as objects:

> typeof []
'object'

31.3 for-of and Arrays
We have already encountered the for-of loop. This section briefly recaps how to use it
for Arrays.

31.3.1 for-of: iterating over elements
The following for-of loop iterates over the elements of an Array.

318 31 Arrays (Array)

for (const element of ['a', 'b']) {
console.log(element);

}
// Output:
// 'a'
// 'b'

31.3.2 for-of: iterating over [index, element] pairs
The following for-of loop iterates over [index, element] pairs. Destructuring (described
later), gives us convenient syntax for setting up index and element in the head of for-of.

for (const [index, element] of ['a', 'b'].entries()) {
console.log(index, element);

}
// Output:
// 0, 'a'
// 1, 'b'

31.4 Array-like objects
Some operations that work with Arrays require only the bare minimum: values must
only be Array-like. An Array-like value is an object with the following properties:

• .length: holds the length of the Array-like object.
• [0]: holds the element at index 0 (etc.). Note that if you use numbers as property
names, they are always coerced to strings. Therefore, [0] retrieves the value of the
property whose key is '0'.

For example, Array.from() accepts Array-like objects and converts them to Arrays:
// If you omit .length, it is interpreted as 0
assert.deepEqual(

Array.from({}),
[]);

assert.deepEqual(
Array.from({length:2, 0:'a', 1:'b'}),
['a', 'b']);

The TypeScript interface for Array-like objects is:
interface ArrayLike<T> {

length: number;
[n: number]: T;

}

Array-like objects are relatively rare in modern JavaScript

31.5 Converting iterable and Array-like values to Arrays 319

Array-like objects used to be common before ES6; now you don’t see them very
often.

31.5 Converting iterable and Array-like values to Arrays
There are two common ways of converting iterable and Array-like values to Arrays:
spreading and Array.from().

31.5.1 Converting iterables to Arrays via spreading (...)
Inside an Array literal, spreading via ... converts any iterable object into a series of
Array elements. For example:

// Get an Array-like collection from a web browser’s DOM
const domCollection = document.querySelectorAll('a');

// Alas, the collection is missing many Array methods
assert.equal('map' in domCollection, false);

// Solution: convert it to an Array
const arr = [...domCollection];
assert.deepEqual(

arr.map(x => x.href),
['https://2ality.com', 'https://exploringjs.com']);

The conversion works because the DOM collection is iterable.

31.5.2 Converting iterables and Array-like objects to Arrays via Ar-
ray.from() (advanced)

Array.from() can be used in two modes.

31.5.2.1 Mode 1 of Array.from(): converting

The first mode has the following type signature:

.from<T>(iterable: Iterable<T> | ArrayLike<T>): T[]

Interface Iterable is shown in the chapter on synchronous iteration. Interface ArrayLike
appeared earlier in this chapter.

With a single parameter, Array.from() converts anything iterable or Array-like to an
Array:

> Array.from(new Set(['a', 'b']))
['a', 'b']
> Array.from({length: 2, 0:'a', 1:'b'})
['a', 'b']

320 31 Arrays (Array)

31.5.2.2 Mode 2 of Array.from(): converting and mapping
The second mode of Array.from() involves two parameters:

.from<T, U>(
iterable: Iterable<T> | ArrayLike<T>,
mapFunc: (v: T, i: number) => U,
thisArg?: any)
: U[]

In this mode, Array.from() does several things:
• It iterates over iterable.
• It calls mapFuncwith each iterated value. The optional parameter thisArg specifies
a this for mapFunc.

• It applies mapFunc to each iterated value.
• It collects the results in a new Array and returns it.

In other words: we are going from an iterable with elements of type T to an Array with
elements of type U.
This is an example:

> Array.from(new Set(['a', 'b']), x => x + x)
['aa', 'bb']

31.6 Creating and filling Arrays with arbitrary lengths
The best way of creating an Array is via an Array literal. However, you can’t always use
one: The Array may be too large, you may not know its length during development, or
you may want to keep its length flexible. Then I recommend the following techniques
for creating, and possibly filling, Arrays.

31.6.1 Do you need to create an empty Array that you’ll fill completely
later on?

> new Array(3)
[, , ,]

Note that the result has three holes (empty slots) – the last comma in an Array literal is
always ignored.

31.6.2 Do you need to create an Array filled with a primitive value?
> new Array(3).fill(0)
[0, 0, 0]

Caveat: If you use .fill() with an object, then each Array element will refer to this
object (sharing it).

const arr = new Array(3).fill({});
arr[0].prop = true;

31.7 Multidimensional Arrays 321

assert.deepEqual(
arr, [

{prop: true},
{prop: true},
{prop: true},

]);

The next subsection explains how to fix this.

31.6.3 Do you need to create an Array filled with objects?
> Array.from({length: 3}, () => ({}))
[{}, {}, {}]

31.6.4 Do you need to create a range of integers?
function createRange(start, end) {

return Array.from({length: end-start}, (_, i) => i+start);
}
assert.deepEqual(

createRange(2, 5),
[2, 3, 4]);

Here is an alternative, slightly hacky technique for creating integer ranges that start at
zero:

/** Returns an iterable */
function createRange(end) {

return new Array(end).keys();
}
assert.deepEqual(

[...createRange(4)],
[0, 1, 2, 3]);

This works because .keys() treats holes like undefined elements and lists their indices.

31.6.5 Use a Typed Array if the elements are all integers or all floats
If you are dealing with Arrays of integers or floats, consider Typed Arrays, which were
created for this purpose.

31.7 Multidimensional Arrays
JavaScript does not have real multidimensional Arrays; you need to resort to Arrays
whose elements are Arrays:

function initMultiArray(...dimensions) {
function initMultiArrayRec(dimIndex) {

if (dimIndex >= dimensions.length) {
return 0;

322 31 Arrays (Array)

} else {
const dim = dimensions[dimIndex];
const arr = [];
for (let i=0; i<dim; i++) {
arr.push(initMultiArrayRec(dimIndex+1));

}
return arr;

}
}
return initMultiArrayRec(0);

}

const arr = initMultiArray(4, 3, 2);
arr[3][2][1] = 'X'; // last in each dimension
assert.deepEqual(arr, [

[[0, 0], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 'X']],

]);

31.8 More Array features (advanced)
In this section, we look at phenomena you don’t encounter often when working with
Arrays.

31.8.1 Array indices are (slightly special) property keys
You’d think that Array elements are special because you are accessing them via numbers.
But the square brackets operator [] for doing so is the same operator that is used for
accessing properties. It coerces any value (that is not a symbol) to a string. Therefore,
Array elements are (almost) normal properties (line A) and it doesn’t matter if you use
numbers or strings as indices (lines B and C):

const arr = ['a', 'b'];
arr.prop = 123;
assert.deepEqual(

Object.keys(arr),
['0', '1', 'prop']); // (A)

assert.equal(arr[0], 'a'); // (B)
assert.equal(arr['0'], 'a'); // (C)

Tomakematters evenmore confusing, this is only how the language specification defines
things (the theory of JavaScript, if you will). Most JavaScript engines optimize under the
hood and do use actual integers to access Array elements (the practice of JavaScript, if
you will).
Property keys (strings!) that are used for Array elements are called indices. A string str

https://tc39.github.io/ecma262/#integer-index

31.8 More Array features (advanced) 323

is an index if converting it to a 32-bit unsigned integer and back results in the original
value. Written as a formula:

ToString(ToUint32(str)) === str

31.8.1.1 Listing indices

When listing property keys, indices are treated specially – they always come first and are
sorted like numbers ('2' comes before '10'):

const arr = [];
arr.prop = true;
arr[1] = 'b';
arr[0] = 'a';

assert.deepEqual(
Object.keys(arr),
['0', '1', 'prop']);

Note that .length, .entries() and .keys() treat Array indices as numbers and ignore
non-index properties:

assert.equal(arr.length, 2);
assert.deepEqual(

[...arr.keys()], [0, 1]);
assert.deepEqual(

[...arr.entries()], [[0, 'a'], [1, 'b']]);

We used a spread element (...) to convert the iterables returned by .keys() and .en-
tries() to Arrays.

31.8.2 Arrays are dictionaries and can have holes
We distinguish two kinds of Arrays in JavaScript:

• An Array arr is dense if all indices i, with 0 ≤ i < arr.length, exist. That is, the
indices form a contiguous range.

• An Array is sparse if the range of indices has holes in it. That is, some indices are
missing.

Arrays can be sparse in JavaScript because Arrays are actually dictionaries from indices
to values.

Recommendation: avoid holes
So far, we have only seen denseArrays and it’s indeed recommended to avoid holes:
They make your code more complicated and are not handled consistently by Array
methods. Additionally, JavaScript engines optimize dense Arrays, making them
faster.

324 31 Arrays (Array)

31.8.2.1 Creating holes

You can create holes by skipping indices when assigning elements:

const arr = [];
arr[0] = 'a';
arr[2] = 'c';

assert.deepEqual(Object.keys(arr), ['0', '2']); // (A)

assert.equal(0 in arr, true); // element
assert.equal(1 in arr, false); // hole

In line A, we are using Object.keys() because arr.keys() treats holes as if they were
undefined elements and does not reveal them.

Another way of creating holes is to skip elements in Array literals:

const arr = ['a', , 'c'];

assert.deepEqual(Object.keys(arr), ['0', '2']);

You can also delete Array elements:

const arr = ['a', 'b', 'c'];
assert.deepEqual(Object.keys(arr), ['0', '1', '2']);
delete arr[1];
assert.deepEqual(Object.keys(arr), ['0', '2']);

31.8.2.2 How do Array operations treat holes?

Alas, there are many different ways in which Array operations treat holes.

Some Array operations remove holes:

> ['a',,'b'].filter(x => true)
['a', 'b']

Some Array operations ignore holes:

> ['a', ,'a'].every(x => x === 'a')
true

Some Array operations ignore but preserve holes:

> ['a',,'b'].map(x => 'c')
['c', , 'c']

Some Array operations treat holes as undefined elements:

> Array.from(['a',,'b'], x => x)
['a', undefined, 'b']
> [...['a',,'b'].entries()]
[[0, 'a'], [1, undefined], [2, 'b']]

31.9 Adding and removing elements (destructively and non-destructively) 325

Object.keys() works differently than .keys() (strings vs. numbers, holes don’t have
keys):

> [...['a',,'b'].keys()]
[0, 1, 2]
> Object.keys(['a',,'b'])
['0', '2']

There is no rule to remember here. If it ever matters how an Array operation treats holes,
the best approach is to do a quick test in a console.

31.9 Adding and removing elements (destructively and
non-destructively)

JavaScript’s Array is quite flexible andmore like a combination of array, stack, and queue.
This section explores ways of adding and removingArray elements. Most operations can
be performed both destructively (modifying the Array) and non-destructively (producing a
modified copy).

31.9.1 Prepending elements and Arrays
In the following code, we destructively prepend single elements to arr1 and an Array to
arr2:

const arr1 = ['a', 'b'];
arr1.unshift('x', 'y'); // prepend single elements
assert.deepEqual(arr1, ['x', 'y', 'a', 'b']);

const arr2 = ['a', 'b'];
arr2.unshift(...['x', 'y']); // prepend Array
assert.deepEqual(arr2, ['x', 'y', 'a', 'b']);

Spreading lets us unshift an Array into arr2.

Non-destructive prepending is done via spread elements:

const arr1 = ['a', 'b'];
assert.deepEqual(

['x', 'y', ...arr1], // prepend single elements
['x', 'y', 'a', 'b']);

assert.deepEqual(arr1, ['a', 'b']); // unchanged!

const arr2 = ['a', 'b'];
assert.deepEqual(

[...['x', 'y'], ...arr2], // prepend Array
['x', 'y', 'a', 'b']);

assert.deepEqual(arr2, ['a', 'b']); // unchanged!

326 31 Arrays (Array)

31.9.2 Appending elements and Arrays
In the following code, we destructively append single elements to arr1 and an Array to
arr2:

const arr1 = ['a', 'b'];
arr1.push('x', 'y'); // append single elements
assert.deepEqual(arr1, ['a', 'b', 'x', 'y']);

const arr2 = ['a', 'b'];
arr2.push(...['x', 'y']); // append Array
assert.deepEqual(arr2, ['a', 'b', 'x', 'y']);

Spreading lets us push an Array into arr2.
Non-destructive appending is done via spread elements:

const arr1 = ['a', 'b'];
assert.deepEqual(

[...arr1, 'x', 'y'], // append single elements
['a', 'b', 'x', 'y']);

assert.deepEqual(arr1, ['a', 'b']); // unchanged!

const arr2 = ['a', 'b'];
assert.deepEqual(

[...arr2, ...['x', 'y']], // append Array
['a', 'b', 'x', 'y']);

assert.deepEqual(arr2, ['a', 'b']); // unchanged!

31.9.3 Removing elements
These are three destructive ways of removing Array elements:

// Destructively remove first element:
const arr1 = ['a', 'b', 'c'];
assert.equal(arr1.shift(), 'a');
assert.deepEqual(arr1, ['b', 'c']);

// Destructively remove last element:
const arr2 = ['a', 'b', 'c'];
assert.equal(arr2.pop(), 'c');
assert.deepEqual(arr2, ['a', 'b']);

// Remove one or more elements anywhere:
const arr3 = ['a', 'b', 'c', 'd'];
assert.deepEqual(arr3.splice(1, 2), ['b', 'c']);
assert.deepEqual(arr3, ['a', 'd']);

.splice() is covered in more detail in the quick reference at the end of this chapter.
Destructuring via a rest element lets you non-destructively remove elements from the
beginning of an Array (destructuring is covered later).

31.10 Methods: iteration and transformation (.find(), .map(), .filter(), etc.) 327

const arr1 = ['a', 'b', 'c'];
// Ignore first element, extract remaining elements
const [, ...arr2] = arr1;

assert.deepEqual(arr2, ['b', 'c']);
assert.deepEqual(arr1, ['a', 'b', 'c']); // unchanged!

Alas, a rest element must come last in an Array. Therefore, you can only use it to extract
suffixes.

Exercise: Implementing a queue via an Array
exercises/arrays/queue_via_array_test.mjs

31.10 Methods: iteration and transformation (.find(),
.map(), .filter(), etc.)

In this section, we take a look at Array methods for iterating over Arrays and for trans-
forming Arrays.

31.10.1 Callbacks for iteration and transformation methods
All iteration and transformation methods use callbacks. The former feed all iterated val-
ues to their callbacks; the latter ask their callbacks how to transform Arrays.
These callbacks have type signatures that look as follows:

callback: (value: T, index: number, array: Array<T>) => boolean

That is, the callback gets three parameters (it is free to ignore any of them):
• value is the most important one. This parameter holds the iterated value that is
currently being processed.

• index can additionally tell the callback what the index of the iterated value is.
• array points to the current Array (the receiver of the method call). Some algo-
rithms need to refer to the whole Array – e.g., to search it for answers. This param-
eter lets you write reusable callbacks for such algorithms.

What the callback is expected to returndepends on themethod it is passed to. Possibilities
include:

• .map() fills its result with the values returned by its callback:
> ['a', 'b', 'c'].map(x => x + x)
['aa', 'bb', 'cc']

• .find() returns the first Array element for which its callback returns true:
> ['a', 'bb', 'ccc'].find(str => str.length >= 2)
'bb'

Both of these methods are described in more detail later.

328 31 Arrays (Array)

31.10.2 Searching elements: .find(), .findIndex()
.find() returns the first element for which its callback returns a truthy value (and unde-
fined if it can’t find anything):

> [6, -5, 8].find(x => x < 0)
-5
> [6, 5, 8].find(x => x < 0)
undefined

.findIndex() returns the index of the first element for which its callback returns a truthy
value (and -1 if it can’t find anything):

> [6, -5, 8].findIndex(x => x < 0)
1
> [6, 5, 8].findIndex(x => x < 0)
-1

.findIndex() can be implemented as follows:

function findIndex(arr, callback) {
for (const [i, x] of arr.entries()) {

if (callback(x, i, arr)) {
return i;

}
}
return -1;

}

31.10.3 .map(): copy while giving elements new values
.map() returns a modified copy of the receiver. The elements of the copy are the results
of applying map’s callback to the elements of the receiver.

All of this is easier to understand via examples:

> [1, 2, 3].map(x => x * 3)
[3, 6, 9]
> ['how', 'are', 'you'].map(str => str.toUpperCase())
['HOW', 'ARE', 'YOU']
> [true, true, true].map((_x, index) => index)
[0, 1, 2]

.map() can be implemented as follows:

function map(arr, mapFunc) {
const result = [];
for (const [i, x] of arr.entries()) {

result.push(mapFunc(x, i, arr));
}
return result;

}

31.10 Methods: iteration and transformation (.find(), .map(), .filter(), etc.) 329

Exercise: Numbering lines via .map()
exercises/arrays/number_lines_test.mjs

31.10.4 .flatMap(): mapping to zero or more values
The type signature of Array<T>.prototype.flatMap() is:

.flatMap<U>(
callback: (value: T, index: number, array: T[]) => U|Array<U>,
thisValue?: any

): U[]

Both .map() and .flatMap() take a function callback as a parameter that controls how
an input Array is translated to an output Array:

• With .map(), each input Array element is translated to exactly one output element.
That is, callback returns a single value.

• With .flatMap(), each input Array element is translated to zero or more output
elements. That is, callback returns anArray of values (it can also return non-Array
values, but that is rare).

This is .flatMap() in action:
> ['a', 'b', 'c'].flatMap(x => [x,x])
['a', 'a', 'b', 'b', 'c', 'c']
> ['a', 'b', 'c'].flatMap(x => [x])
['a', 'b', 'c']
> ['a', 'b', 'c'].flatMap(x => [])
[]

31.10.4.1 A simple implementation
You could implement .flatMap() as follows. Note: This implementation is simpler than
the built-in version, which, for example, performs more checks.

function flatMap(arr, mapFunc) {
const result = [];
for (const [index, elem] of arr.entries()) {

const x = mapFunc(elem, index, arr);
// We allow mapFunc() to return non-Arrays
if (Array.isArray(x)) {

result.push(...x);
} else {

result.push(x);
}

}
return result;

}

What is .flatMap() good for? Let’s look at use cases!

330 31 Arrays (Array)

31.10.4.2 Use case: filtering and mapping at the same time

The result of the Array method .map() always has the same length as the Array it is
invoked on. That is, its callback can’t skip Array elements it isn’t interested in. The
ability of .flatMap() to do so is useful in the next example.

We will use the following function processArray() to create an Array that we’ll then
filter and map via .flatMap():

function processArray(arr, callback) {
return arr.map(x => {

try {
return { value: callback(x) };

} catch (e) {
return { error: e };

}
});

}

Next, we create an Array results via processArray():

const results = processArray([1, -5, 6], throwIfNegative);
assert.deepEqual(results, [

{ value: 1 },
{ error: new Error('Illegal value: -5') },
{ value: 6 },

]);

function throwIfNegative(value) {
if (value < 0) {

throw new Error('Illegal value: '+value);
}
return value;

}

We can now use .flatMap() to extract just the values or just the errors from results:

const values = results.flatMap(
result => result.value ? [result.value] : []);

assert.deepEqual(values, [1, 6]);

const errors = results.flatMap(
result => result.error ? [result.error] : []);

assert.deepEqual(errors, [new Error('Illegal value: -5')]);

31.10.4.3 Use case: mapping to multiple values

The Array method .map() maps each input Array element to one output element. But
what if we want to map it to multiple output elements?

That becomes necessary in the following example:

31.10 Methods: iteration and transformation (.find(), .map(), .filter(), etc.) 331

> stringsToCodePoints(['many', 'a', 'moon'])
['m', 'a', 'n', 'y', 'a', 'm', 'o', 'o', 'n']

We want to convert an Array of strings to an Array of Unicode characters (code points).
The following function achieves that via .flatMap():

function stringsToCodePoints(strs) {
return strs.flatMap(str => [...str]);

}

Exercises: .flatMap()
• exercises/arrays/convert_to_numbers_test.mjs

• exercises/arrays/replace_objects_test.mjs

31.10.5 .filter(): only keep some of the elements
The Array method .filter() returns an Array collecting all elements for which the call-
back returns a truthy value.

For example:

> [-1, 2, 5, -7, 6].filter(x => x >= 0)
[2, 5, 6]
> ['a', 'b', 'c', 'd'].filter((_x,i) => (i%2)===0)
['a', 'c']

.filter() can be implemented as follows:

function filter(arr, filterFunc) {
const result = [];
for (const [i, x] of arr.entries()) {

if (filterFunc(x, i, arr)) {
result.push(x);

}
}
return result;

}

Exercise: Removing empty lines via .filter()
exercises/arrays/remove_empty_lines_filter_test.mjs

31.10.6 .reduce(): deriving a value from an Array (advanced)
Method .reduce() is a powerful tool for computing a “summary” of an Array arr. A
summary can be any kind of value:

• A number. For example, the sum of all elements of arr.

332 31 Arrays (Array)

• An Array. For example, a copy of arr, where each element is twice the original
element.

• Etc.
reduce is also known as foldl (“fold left”) in functional programming and popular there.
One caveat is that it can make code difficult to understand.
.reduce() has the following type signature (inside an Array<T>):

.reduce<U>(
callback: (accumulator: U, element: T, index: number, array: T[]) => U,
init?: U)
: U

T is the type of the Array elements, U is the type of the summary. The two may or may
not be different. accumulator is just another name for “summary”.
To compute the summary of an Array arr, .reduce() feeds all Array elements to its
callback one at a time:

const accumulator_0 = callback(init, arr[0]);
const accumulator_1 = callback(accumulator_0, arr[1]);
const accumulator_2 = callback(accumulator_1, arr[2]);
// Etc.

callback combines the previously computed summary (stored in its parameter accu-
mulator) with the current Array element and returns the next accumulator. The result
of .reduce() is the final accumulator – the last result of callback after it has visited all
elements.
In other words: callback does most of the work; .reduce() just invokes it in a useful
manner.
You could say that the callback folds Array elements into the accumulator. That’s why
this operation is called “fold” in functional programming.

31.10.6.1 A first example
Let’s look at an example of .reduce() in action: function addAll() computes the sum of
all numbers in an Array arr.

function addAll(arr) {
const startSum = 0;
const callback = (sum, element) => sum + element;
return arr.reduce(callback, startSum);

}
assert.equal(addAll([1, 2, 3]), 6); // (A)
assert.equal(addAll([7, -4, 2]), 5);

In this case, the accumulator holds the sum of all Array elements that callback has al-
ready visited.
How was the result 6 derived from the Array in line A? Via the following invocations of
callback:

31.10 Methods: iteration and transformation (.find(), .map(), .filter(), etc.) 333

callback(0, 1) --> 1
callback(1, 2) --> 3
callback(3, 3) --> 6

Notes:

• The first parameters are the current accumulators (starting with parameter init of
.reduce()).

• The second parameters are the current Array elements.
• The results are the next accumulators.
• The last result of callback is also the result of .reduce().

Alternatively, we could have implemented addAll() via a for-of loop:

function addAll(arr) {
let sum = 0;
for (const element of arr) {

sum = sum + element;
}
return sum;

}

It’s hard to saywhich of the two implementations is “better”: the one based on .reduce()
is a little more concise, while the one based on for-ofmay be a little easier to understand
– especially if you are not familiar with functional programming.

31.10.6.2 Example: finding indices via .reduce()

The following function is an implementation of the Array method .indexOf(). It returns
the first index at which the given searchValue appears inside the Array arr:

const NOT_FOUND = -1;
function indexOf(arr, searchValue) {

return arr.reduce(
(result, elem, index) => {

if (result !== NOT_FOUND) {
// We have already found something: don’t change anything
return result;

} else if (elem === searchValue) {
return index;

} else {
return NOT_FOUND;

}
},
NOT_FOUND);

}
assert.equal(indexOf(['a', 'b', 'c'], 'b'), 1);
assert.equal(indexOf(['a', 'b', 'c'], 'x'), -1);

One limitation of .reduce() is that you can’t finish early (in a for-of loop, you can break).
Here, we always immediately return the result once we have found it.

334 31 Arrays (Array)

31.10.6.3 Example: doubling Array elements

Function double(arr) returns a copy of inArr whose elements are all multiplied by 2:

function double(inArr) {
return inArr.reduce(

(outArr, element) => {
outArr.push(element * 2);
return outArr;

},
[]);

}
assert.deepEqual(

double([1, 2, 3]),
[2, 4, 6]);

We modify the initial value [] by pushing into it. A non-destructive, more functional
version of double() looks as follows:

function double(inArr) {
return inArr.reduce(

// Don’t change `outArr`, return a fresh Array
(outArr, element) => [...outArr, element * 2],
[]);

}
assert.deepEqual(

double([1, 2, 3]),
[2, 4, 6]);

This version is more elegant but also slower and uses more memory.

Exercises: .reduce()
• map() via .reduce(): exercises/arrays/map_via_reduce_test.mjs
• filter() via .reduce(): exercises/arrays/filter_via_reduce_test.mjs
• countMatches() via .reduce(): exercises/arrays/count_matches_via_

reduce_test.mjs

31.11 .sort(): sorting Arrays
.sort() has the following type definition:

sort(compareFunc?: (a: T, b: T) => number): this

By default, .sort() sorts string representations of the elements. These representations
are compared via <. This operator compares lexicographically (the first characters are most
significant). You can see that when sorting numbers:

> [200, 3, 10].sort()
[10, 200, 3]

31.11 .sort(): sorting Arrays 335

When sorting human-language strings, you need to be aware that they are compared
according to their code unit values (char codes):

> ['pie', 'cookie', 'éclair', 'Pie', 'Cookie', 'Éclair'].sort()
['Cookie', 'Pie', 'cookie', 'pie', 'Éclair', 'éclair']

As you can see, all unaccented uppercase letters come before all unaccented lowercase let-
ters, which come before all accented letters. Use Intl, the JavaScript internationalization
API, if you want proper sorting for human languages.

Note that .sort() sorts in place; it changes and returns its receiver:

> const arr = ['a', 'c', 'b'];
> arr.sort() === arr
true
> arr
['a', 'b', 'c']

31.11.1 Customizing the sort order
You can customize the sort order via the parameter compareFunc, which must return a
number that is:

• negative if a < b
• zero if a === b
• positive if a > b

Tip for remembering these rules
A negative number is less than zero (etc.).

31.11.2 Sorting numbers
You can use this helper function to sort numbers:

function compareNumbers(a, b) {
if (a < b) {

return -1;
} else if (a === b) {

return 0;
} else {

return 1;
}

}
assert.deepEqual(

[200, 3, 10].sort(compareNumbers),
[3, 10, 200]);

The following is a quick and dirty alternative.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

336 31 Arrays (Array)

> [200, 3, 10].sort((a,b) => a - b)
[3, 10, 200]

The downsides of this approach are:
• It is cryptic.
• There is a risk of numeric overflow or underflow, if a-b becomes a large positive
or negative number.

31.11.3 Sorting objects
You also need to use a compare function if you want to sort objects. As an example, the
following code shows how to sort objects by age.

const arr = [{age: 200}, {age: 3}, {age: 10}];
assert.deepEqual(

arr.sort((obj1, obj2) => obj1.age - obj2.age),
[{ age: 3 }, { age: 10 }, { age: 200 }]);

Exercise: Sorting objects by name
exercises/arrays/sort_objects_test.mjs

31.12 Quick reference: Array<T>
Legend:

• R: method does not change the Array (non-destructive).
• W: method changes the Array (destructive).

31.12.1 new Array()

new Array(n) creates an Array of length n that contains n holes:
// Trailing commas are always ignored.
// Therefore: number of commas = number of holes
assert.deepEqual(new Array(3), [,,,]);

new Array() creates an empty Array. However, I recommend to always use [] instead.

31.12.2 Static methods of Array
• Array.from<T>(iterable: Iterable<T> | ArrayLike<T>): T[] [ES6]

• Array.from<T,U>(iterable: Iterable<T> | ArrayLike<T>, mapFunc: (v: T,
k: number) => U, thisArg?: any): U[] [ES6]

Converts an iterable or an Array-like object to an Array. Optionally, the input val-
ues can be translated via mapFunc before they are added to the output Array.
Examples:

31.12 Quick reference: Array<T> 337

> Array.from(new Set(['a', 'b'])) // iterable
['a', 'b']
> Array.from({length: 2, 0:'a', 1:'b'}) // Array-like object
['a', 'b']

• Array.of<T>(...items: T[]): T[] [ES6]

This static method is mainly useful for subclasses of Array, where it serves as a
custom Array literal:

class MyArray extends Array {}

assert.equal(
MyArray.of('a', 'b') instanceof MyArray, true);

31.12.3 Methods of Array<T>.prototype
• .concat(...items: Array<T[] | T>): T[] [R, ES3]

Returns a new Array that is the concatenation of the receiver and all items. Non-
Array parameters (such as 'b' in the following example) are treated as if theywere
Arrays with single elements.

> ['a'].concat('b', ['c', 'd'])
['a', 'b', 'c', 'd']

• .copyWithin(target: number, start: number, end=this.length): this [W, ES6]

Copies the elementswhose indices range from (including) start to (excluding) end
to indices starting with target. Overlapping is handled correctly.

> ['a', 'b', 'c', 'd'].copyWithin(0, 2, 4)
['c', 'd', 'c', 'd']

If start or end is negative, then .length is added to it.
• .entries(): Iterable<[number, T]> [R, ES6]

Returns an iterable over [index, element] pairs.
> Array.from(['a', 'b'].entries())
[[0, 'a'], [1, 'b']]

• .every(callback: (value: T, index: number, array: Array<T>) => boolean,
thisArg?: any): boolean [R, ES5]

Returns true if callback returns a truthy value for every element. Otherwise, it
returns false. It stops as soon as it receives a falsy value. Thismethod corresponds
to universal quantification (“for all”, ∀) in mathematics.

> [1, 2, 3].every(x => x > 0)
true
> [1, -2, 3].every(x => x > 0)
false

Related method: .some() (“exists”).

338 31 Arrays (Array)

• .fill(value: T, start=0, end=this.length): this [W, ES6]

Assigns value to every index between (including) start and (excluding) end.
> [0, 1, 2].fill('a')
['a', 'a', 'a']

Caveat: Don’t use thismethod to fill anArraywith an object obj; then each element
will refer to obj (sharing it). In this case, it’s better to use Array.from().

• .filter(callback: (value: T, index: number, array: Array<T>) => any,
thisArg?: any): T[] [R, ES5]

Returns an Array with only those elements for which callback returns a truthy
value.

> [1, -2, 3].filter(x => x > 0)
[1, 3]

• .find(predicate: (value: T, index: number, obj: T[]) => boolean, this-
Arg?: any): T | undefined [R, ES6]

The result is the first element for which predicate returns a truthy value. If there
is no such element, the result is undefined.

> [1, -2, 3].find(x => x < 0)
-2
> [1, 2, 3].find(x => x < 0)
undefined

• .findIndex(predicate: (value: T, index: number, obj: T[]) => boolean,
thisArg?: any): number [R, ES6]

The result is the index of the first element for which predicate returns a truthy
value. If there is no such element, the result is -1.

> [1, -2, 3].findIndex(x => x < 0)
1
> [1, 2, 3].findIndex(x => x < 0)
-1

• .flat(depth = 1): any[] [R, ES2019]

“Flattens” an Array: It descends into the Arrays that are nested inside the input
Array and creates a copywhere all values it finds at level depth or lower aremoved
to the top level.

> [1,2, [3,4], [[5,6]]].flat(0) // no change
[1, 2, [3,4], [[5,6]]]

> [1,2, [3,4], [[5,6]]].flat(1)
[1, 2, 3, 4, [5,6]]

> [1,2, [3,4], [[5,6]]].flat(2)
[1, 2, 3, 4, 5, 6]

31.12 Quick reference: Array<T> 339

• .flatMap<U>(callback: (value: T, index: number, array: T[]) =>
U|Array<U>, thisValue?: any): U[] [R, ES2019]

The result is produced by invoking callback() for each element of the original
Array and concatenating the Arrays it returns.

> ['a', 'b', 'c'].flatMap(x => [x,x])
['a', 'a', 'b', 'b', 'c', 'c']
> ['a', 'b', 'c'].flatMap(x => [x])
['a', 'b', 'c']
> ['a', 'b', 'c'].flatMap(x => [])
[]

• .forEach(callback: (value: T, index: number, array: Array<T>) => void,
thisArg?: any): void [R, ES5]

Calls callback for each element.

['a', 'b'].forEach((x, i) => console.log(x, i))

// Output:
// 'a', 0
// 'b', 1

A for-of loop is usually a better choice: it’s faster, supports break and can iterate
over arbitrary iterables.

• .includes(searchElement: T, fromIndex=0): boolean [R, ES2016]

Returns true if the receiver has an element whose value is searchElement and
false, otherwise. Searching starts at index fromIndex.

> [0, 1, 2].includes(1)
true
> [0, 1, 2].includes(5)
false

• .indexOf(searchElement: T, fromIndex=0): number [R, ES5]

Returns the index of the first element that is strictly equal to searchElement. Re-
turns -1 if there is no such element. Starts searching at index fromIndex, visiting
higher indices next.

> ['a', 'b', 'a'].indexOf('a')
0
> ['a', 'b', 'a'].indexOf('a', 1)
2
> ['a', 'b', 'a'].indexOf('c')
-1

• .join(separator = ','): string [R, ES1]

Creates a string by concatenating string representations of all elements, separating
them with separator.

340 31 Arrays (Array)

> ['a', 'b', 'c'].join('##')
'a##b##c'
> ['a', 'b', 'c'].join()
'a,b,c'

• .keys(): Iterable<number> [R, ES6]

Returns an iterable over the keys of the receiver.
> [...['a', 'b'].keys()]
[0, 1]

• .lastIndexOf(searchElement: T, fromIndex=this.length-1): number [R, ES5]

Returns the index of the last element that is strictly equal to searchElement. Re-
turns -1 if there is no such element. Starts searching at index fromIndex, visiting
lower indices next.

> ['a', 'b', 'a'].lastIndexOf('a')
2
> ['a', 'b', 'a'].lastIndexOf('a', 1)
0
> ['a', 'b', 'a'].lastIndexOf('c')
-1

• .map<U>(mapFunc: (value: T, index: number, array: Array<T>) => U, this-
Arg?: any): U[] [R, ES5]

Returns a newArray, in which every element is the result of mapFunc being applied
to the corresponding element of the receiver.

> [1, 2, 3].map(x => x * 2)
[2, 4, 6]
> ['a', 'b', 'c'].map((x, i) => i)
[0, 1, 2]

• .pop(): T | undefined [W, ES3]

Removes and returns the last element of the receiver. That is, it treats the end of
the receiver as a stack. The opposite of .push().

> const arr = ['a', 'b', 'c'];
> arr.pop()
'c'
> arr
['a', 'b']

• .push(...items: T[]): number [W, ES3]

Adds zero or more items to the end of the receiver. That is, it treats the end of the
receiver as a stack. The return value is the length of the receiver after the change.
The opposite of .pop().

> const arr = ['a', 'b'];
> arr.push('c', 'd')

31.12 Quick reference: Array<T> 341

4
> arr
['a', 'b', 'c', 'd']

• .reduce<U>(callback: (accumulator: U, element: T, index: number, array:
T[]) => U, init?: U): U [R, ES5]

This method produces a summary of the receiver: it feeds all Array elements to
callback, which combines a current summary (in parameter accumulator) with
the current Array element and returns the next accumulator:

const accumulator_0 = callback(init, arr[0]);
const accumulator_1 = callback(accumulator_0, arr[1]);
const accumulator_2 = callback(accumulator_1, arr[2]);
// Etc.

The result of .reduce() is the last result of callback after it has visited all Array
elements.

> [1, 2, 3].reduce((accu, x) => accu + x, 0)
6
> [1, 2, 3].reduce((accu, x) => accu + String(x), '')
'123'

If no init is provided, the Array element at index 0 is used and the element at
index 1 is visited first. Therefore, the Array must have at least length 1.

• .reduceRight<U>(callback: (accumulator: U, element: T, index: number,
array: T[]) => U, init?: U): U [R, ES5]

Works like .reduce(), but visits the Array elements backward, starting with the
last element.

> [1, 2, 3].reduceRight((accu, x) => accu + String(x), '')
'321'

• .reverse(): this [W, ES1]

Rearranges the elements of the receiver so that they are in reverse order and then
returns the receiver.

> const arr = ['a', 'b', 'c'];
> arr.reverse()
['c', 'b', 'a']
> arr
['c', 'b', 'a']

• .shift(): T | undefined [W, ES3]

Removes and returns the first element of the receiver. The opposite of .unshift().

> const arr = ['a', 'b', 'c'];
> arr.shift()
'a'

342 31 Arrays (Array)

> arr
['b', 'c']

• .slice(start=0, end=this.length): T[] [R, ES3]

Returns a new Array containing the elements of the receiver whose indices are
between (including) start and (excluding) end.

> ['a', 'b', 'c', 'd'].slice(1, 3)
['b', 'c']
> ['a', 'b'].slice() // shallow copy
['a', 'b']

Negative indices are allowed and added to .length:
> ['a', 'b', 'c'].slice(-2)
['b', 'c']

• .some(callback: (value: T, index: number, array: Array<T>) => boolean,
thisArg?: any): boolean [R, ES5]

Returns true if callback returns a truthy value for at least one element. Other-
wise, it returns false. It stops as soon as it receives a truthy value. This method
corresponds to existential quantification (“exists”, ∃) in mathematics.

> [1, 2, 3].some(x => x < 0)
false
> [1, -2, 3].some(x => x < 0)
true

Related method: .every() (“for all”).
• .sort(compareFunc?: (a: T, b: T) => number): this [W, ES1]

Sorts the receiver and returns it. By default, it sorts string representations of the
elements. It does so lexicographically and according to the code unit values (char
codes) of the characters:

> ['pie', 'cookie', 'éclair', 'Pie', 'Cookie', 'Éclair'].sort()
['Cookie', 'Pie', 'cookie', 'pie', 'Éclair', 'éclair']
> [200, 3, 10].sort()
[10, 200, 3]

You can customize the sort order via compareFunc, which returns a number that is:
– negative if a < b
– zero if a === b
– positive if a > b

Trick for sorting numbers (with a risk of numeric overflow or underflow):
> [200, 3, 10].sort((a, b) => a - b)
[3, 10, 200]

31.12 Quick reference: Array<T> 343

.sort() is stable
Since ECMAScript 2019, sorting is guaranteed to be stable: if elements are
considered equal by sorting, then sorting does not change the order of those
elements (relative to each other).

• .splice(start: number, deleteCount=this.length-start, ...items: T[]):
T[] [W, ES3]

At index start, it removes deleteCount elements and inserts the items. It returns
the deleted elements.

> const arr = ['a', 'b', 'c', 'd'];
> arr.splice(1, 2, 'x', 'y')
['b', 'c']
> arr
['a', 'x', 'y', 'd']

start can be negative and is added to .length if it is:

> ['a', 'b', 'c'].splice(-2, 2)
['b', 'c']

• .toString(): string [R, ES1]

Converts all elements to strings via String(), concatenates them while separating
them with commas, and returns the result.

> [1, 2, 3].toString()
'1,2,3'
> ['1', '2', '3'].toString()
'1,2,3'
> [].toString()
''

• .unshift(...items: T[]): number [W, ES3]

Inserts the items at the beginning of the receiver and returns its length after this
modification.

> const arr = ['c', 'd'];
> arr.unshift('e', 'f')
4
> arr
['e', 'f', 'c', 'd']

• .values(): Iterable<T> [R, ES6]

Returns an iterable over the values of the receiver.

> [...['a', 'b'].values()]
['a', 'b']

344 31 Arrays (Array)

31.12.4 Sources
• TypeScript’s built-in typings
• MDN web docs for JavaScript
• ECMAScript language specification

Quiz
See quiz app.

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

Chapter 32

Typed Arrays: handling binary
data (Advanced)

Contents
32.1 The basics of the API . 346

32.1.1 Use cases for Typed Arrays . 346
32.1.2 The core classes: ArrayBuffer, Typed Arrays, DataView 346
32.1.3 Using Typed Arrays . 347
32.1.4 Using DataViews . 348

32.2 Element types . 348
32.2.1 Handling overflow and underflow 349
32.2.2 Endianness . 350

32.3 More information on Typed Arrays 350
32.3.1 The static method «ElementType»Array.from() 351
32.3.2 Typed Arrays are iterable . 352
32.3.3 Typed Arrays vs. normal Arrays 352
32.3.4 Converting Typed Arrays to and from normal Arrays 353
32.3.5 Concatenating Typed Arrays 353

32.4 Quick references: indices vs. offsets 354
32.5 Quick reference: ArrayBuffers . 355

32.5.1 new ArrayBuffer() . 355
32.5.2 Static methods of ArrayBuffer 355
32.5.3 Properties of ArrayBuffer.prototype 355

32.6 Quick reference: Typed Arrays . 356
32.6.1 Static methods of TypedArray<T> 356
32.6.2 Properties of TypedArray<T>.prototype 356
32.6.3 new «ElementType»Array() 358
32.6.4 Static properties of «ElementType»Array 359
32.6.5 Properties of «ElementType»Array.prototype 359

32.7 Quick reference: DataViews . 359

345

346 32 Typed Arrays: handling binary data (Advanced)

32.7.1 new DataView() . 359
32.7.2 Properties of DataView.prototype 359

32.1 The basics of the API
Much data on the web is text: JSON files, HTML files, CSS files, JavaScript code, etc.
JavaScript handles such data well via its built-in strings.

However, before 2011, it did not handle binary data well. The Typed Array Specification
1.0 was introduced on February 8, 2011 and provides tools for working with binary data.
With ECMAScript 6, Typed Arrays were added to the core language and gainedmethods
that were previously only available for normal Arrays (.map(), .filter(), etc.).

32.1.1 Use cases for Typed Arrays
The main uses cases for Typed Arrays, are:

• Processing binary data: managing image data, manipulating binary files, handling
binary network protocols, etc.

• Interacting with native APIs: Native APIs often receive and return data in a binary
format, which you could neither store nor manipulate well in pre-ES6 JavaScript.
That meant that whenever youwere communicating with such an API, data had to
be converted from JavaScript to binary and back for every call. Typed Arrays elim-
inate this bottleneck. One example of communicating with native APIs is WebGL,
for which Typed Arrays were initially created. Section “History of Typed Arrays”
of the article “Typed Arrays: Binary Data in the Browser” (by Ilmari Heikkinen for
HTML5 Rocks) has more information.

32.1.2 The core classes: ArrayBuffer, Typed Arrays, DataView
The Typed Array API stores binary data in instances of ArrayBuffer:

const buf = new ArrayBuffer(4); // length in bytes
// buf is initialized with zeros

An ArrayBuffer itself is a black box: if you want to access its data, you must wrap it in
another object – a view object. Two kinds of view objects are available:

• Typed Arrays: let you access the data as an indexed sequence of elements that all
have the same type. Examples include:

– Uint8Array: Elements are unsigned 8-bit integers. Unsignedmeans that their
ranges start at zero.

– Int16Array: Elements are signed 16-bit integers. Signedmeans that they have
a sign and can be negative, zero, or positive.

– Float32Array: Elements are 32-bit floating point numbers.
• DataViews: let you interpret the data as various types (Uint8, Int16, Float32, etc.)
that you can read and write at any byte offset.

Fig. 32.1 shows a class diagram of the API.

https://www.khronos.org/registry/typedarray/specs/1.0/
https://www.khronos.org/registry/typedarray/specs/1.0/
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history

32.1 The basics of the API 347

Figure 32.1: The classes of the Typed Array API.

32.1.3 Using Typed Arrays
Typed Arrays are used much like normal Arrays with a few notable differences:

• Typed Arrays store their data in ArrayBuffers.
• All elements are initialized with zeros.
• All elements have the same type. Writing values to a Typed Array coerces them to
that type. Reading values produces normal numbers.

• The length of a Typed Array is immutable; it can’t be changed.
• Typed Arrays can’t have holes.

32.1.3.1 Creating Typed Arrays

The following code shows three different ways of creating the same Typed Array:

// Argument: Typed Array or Array-like object
const ta1 = new Uint8Array([0, 1, 2]);

const ta2 = Uint8Array.of(0, 1, 2);

const ta3 = new Uint8Array(3); // length of Typed Array
ta3[0] = 0;
ta3[1] = 1;
ta3[2] = 2;

assert.deepEqual(ta1, ta2);
assert.deepEqual(ta1, ta3);

348 32 Typed Arrays: handling binary data (Advanced)

32.1.3.2 The wrapped ArrayBuffer
const typedArray = new Int16Array(2); // 2 elements
assert.equal(typedArray.length, 2);

assert.deepEqual(
typedArray.buffer, new ArrayBuffer(4)); // 4 bytes

32.1.3.3 Getting and setting elements
const typedArray = new Int16Array(2);

assert.equal(typedArray[1], 0); // initialized with 0
typedArray[1] = 72;
assert.equal(typedArray[1], 72);

32.1.4 Using DataViews
This is how DataViews are used:

const dataView = new DataView(new ArrayBuffer(4));
assert.equal(dataView.getInt16(0), 0);
assert.equal(dataView.getUint8(0), 0);
dataView.setUint8(0, 5);

32.2 Element types

Table 32.1: Element types supported by the Typed Array API.

Element Typed Array Bytes Description
Int8 Int8Array 1 8-bit signed integer ES6
Uint8 Uint8Array 1 8-bit unsigned integer ES6
Uint8C Uint8ClampedArray 1 8-bit unsigned integer ES6

(clamped conversion) ES6
Int16 Int16Array 2 16-bit signed integer ES6
Uint16 Uint16Array 2 16-bit unsigned integer ES6
Int32 Int32Array 4 32-bit signed integer ES6
Uint32 Uint32Array 4 32-bit unsigned integer ES6
Float32 Float32Array 4 32-bit floating point ES6
Float64 Float64Array 8 64-bit floating point ES6

Tbl. 32.1 lists the available element types. These types (e.g., Int32) show up in two loca-
tions:

• They are the types of the elements of Typed Arrays. For example, all elements of
a Int32Array have the type Int32. The element type is the only aspect of Typed
Arrays that differs.

32.2 Element types 349

• They are the lenses throughwhich anArrayBuffer accesses its DataViewwhen you
use methods such as .getInt32() and .setInt32().

The element type Uint8C is special: it is not supported by DataView and only exists to
enable Uint8ClampedArray. This Typed Array is used by the canvas element (where
it replaces CanvasPixelArray) and should otherwise be avoided. The only difference
between Uint8C and Uint8 is how overflow and underflow are handled (as explained in
the next subsection).

32.2.1 Handling overflow and underflow
Normally, when a value is out of the range of the element type, modulo arithmetic is used
to convert it to a value within range. For signed and unsigned integers that means that:

• The highest value plus one is converted to the lowest value (0 for unsigned inte-
gers).

• The lowest value minus one is converted to the highest value.
The following function helps illustrate how conversion works:

function setAndGet(typedArray, value) {
typedArray[0] = value;
return typedArray[0];

}

Modulo conversion for unsigned 8-bit integers:
const uint8 = new Uint8Array(1);

// Highest value of range
assert.equal(setAndGet(uint8, 255), 255);
// Overflow
assert.equal(setAndGet(uint8, 256), 0);

// Lowest value of range
assert.equal(setAndGet(uint8, 0), 0);
// Underflow
assert.equal(setAndGet(uint8, -1), 255);

Modulo conversion for signed 8-bit integers:
const int8 = new Int8Array(1);

// Highest value of range
assert.equal(setAndGet(int8, 127), 127);
// Overflow
assert.equal(setAndGet(int8, 128), -128);

// Lowest value of range
assert.equal(setAndGet(int8, -128), -128);
// Underflow
assert.equal(setAndGet(int8, -129), 127);

350 32 Typed Arrays: handling binary data (Advanced)

Clamped conversion is different:
• All underflowing values are converted to the lowest value.
• All overflowing values are converted to the highest value.
const uint8c = new Uint8ClampedArray(1);

// Highest value of range
assert.equal(setAndGet(uint8c, 255), 255);
// Overflow
assert.equal(setAndGet(uint8c, 256), 255);

// Lowest value of range
assert.equal(setAndGet(uint8c, 0), 0);
// Underflow
assert.equal(setAndGet(uint8c, -1), 0);

32.2.2 Endianness
Whenever a type (such as Uint16) is stored as a sequence of multiple bytes, endianness
matters:

• Big endian: the most significant byte comes first. For example, the Uint16 value
0x4321 is stored as two bytes – first 0x43, then 0x21.

• Little endian: the least significant byte comes first. For example, the Uint16 value
0x4321 is stored as two bytes – first 0x21, then 0x43.

Endianness tends to be fixed per CPU architecture and consistent across native APIs.
Typed Arrays are used to communicate with those APIs, which is why their endianness
follows the endianness of the platform and can’t be changed.
On the other hand, the endianness of protocols and binary files varies, but is fixed per
format, across platforms. Therefore, we must be able to access data with either endian-
ness. DataViews serve this use case and let you specify endianness when you get or set
a value.
Quoting Wikipedia on Endianness:

• Big-endian representation is the most common convention in data networking;
fields in the protocols of the Internet protocol suite, such as IPv4, IPv6, TCP, and
UDP, are transmitted in big-endian order. For this reason, big-endian byte order
is also referred to as network byte order.

• Little-endian storage is popular for microprocessors in part due to significant his-
torical influence on microprocessor designs by Intel Corporation.

Other orderings are also possible. Those are generically called middle-endian or mixed-
endian.

32.3 More information on Typed Arrays
In this section, «ElementType»Array stands for Int8Array, Uint8Array, etc. ElementType
is Int8, Uint8, etc.

https://en.wikipedia.org/wiki/Endianness

32.3 More information on Typed Arrays 351

32.3.1 The static method «ElementType»Array.from()

This method has the type signature:
.from<S>(

source: Iterable<S>|ArrayLike<S>,
mapfn?: S => ElementType, thisArg?: any)
: «ElementType»Array

.from() converts source into an instance of this (a Typed Array).
For example, normal Arrays are iterable and can be converted with this method:

assert.deepEqual(
Uint16Array.from([0, 1, 2]),
Uint16Array.of(0, 1, 2));

Typed Arrays are also iterable:
assert.deepEqual(

Uint16Array.from(Uint8Array.of(0, 1, 2)),
Uint16Array.of(0, 1, 2));

source can also be an Array-like object:
assert.deepEqual(

Uint16Array.from({0:0, 1:1, 2:2, length: 3}),
Uint16Array.of(0, 1, 2));

The optional mapfn lets you transform the elements of source before they become ele-
ments of the result. Why perform the two steps mapping and conversion in one go? Com-
pared to mapping separately via .map(), there are two advantages:

1. No intermediate Array or Typed Array is needed.
2. When converting between Typed Arrays with different precisions, less can go

wrong.
Read on for an explanation of the second advantage.

32.3.1.1 Pitfall: mapping while converting between Typed Array types
The static method .from() can optionally both map and convert between Typed Array
types. Less can go wrong if you use that method.
To see why that is, let us first convert a Typed Array to a Typed Array with a higher
precision. If we use .from() to map, the result is automatically correct. Otherwise, you
must first convert and then map.

const typedArray = Int8Array.of(127, 126, 125);
assert.deepEqual(

Int16Array.from(typedArray, x => x * 2),
Int16Array.of(254, 252, 250));

assert.deepEqual(
Int16Array.from(typedArray).map(x => x * 2),

352 32 Typed Arrays: handling binary data (Advanced)

Int16Array.of(254, 252, 250)); // OK
assert.deepEqual(

Int16Array.from(typedArray.map(x => x * 2)),
Int16Array.of(-2, -4, -6)); // wrong

If we go from a Typed Array to a Typed Array with a lower precision, mapping via
.from() produces the correct result. Otherwise, we must first map and then convert.

assert.deepEqual(
Int8Array.from(Int16Array.of(254, 252, 250), x => x / 2),
Int8Array.of(127, 126, 125));

assert.deepEqual(
Int8Array.from(Int16Array.of(254, 252, 250).map(x => x / 2)),
Int8Array.of(127, 126, 125)); // OK

assert.deepEqual(
Int8Array.from(Int16Array.of(254, 252, 250)).map(x => x / 2),
Int8Array.of(-1, -2, -3)); // wrong

The problem is that if we map via .map(), then input type and output type are the same.
In contrast, .from() goes from an arbitrary input type to an output type that you specify
via its receiver.

32.3.2 Typed Arrays are iterable
Typed Arrays are iterable. That means that you can use the for-of loop and other
iteration-based mechanisms:

const ui8 = Uint8Array.of(0, 1, 2);
for (const byte of ui8) {

console.log(byte);
}
// Output:
// 0
// 1
// 2

ArrayBuffers and DataViews are not iterable.

32.3.3 Typed Arrays vs. normal Arrays
Typed Arrays are much like normal Arrays: they have a .length, elements can be ac-
cessed via the bracket operator [], and they have most of the standard Array methods.
They differ from normal Arrays in the following ways:

• Typed Arrays have buffers. The elements of a Typed Array ta are not stored in ta,
they are stored in an associated ArrayBuffer that can be accessed via ta.buffer:

const ta = new Uint16Array(2); // 2 elements
assert.deepEqual(

ta.buffer, new ArrayBuffer(4)); // 4 bytes

32.3 More information on Typed Arrays 353

• Typed Arrays are initialized with zeros:

– new Array(4) creates a normal Array without any elements. It only has four
holes (indices less than the .length that have no associated elements).

– new Uint8Array(4) creates a Typed Array whose four elements are all 0.

assert.deepEqual(new Uint8Array(4), Uint8Array.of(0, 0, 0, 0));

• All of the elements of a Typed Array have the same type:

– Setting elements converts values to that type.

const ta = new Uint8Array(1);

ta[0] = 257;
assert.equal(ta[0], 1); // 257 % 256 (overflow)

ta[0] = '2';
assert.equal(ta[0], 2);

– Getting elements returns numbers.

const ta = new Uint8Array(1);
assert.equal(ta[0], 0);
assert.equal(typeof ta[0], 'number');

• The .length of a Typed Array is derived from its ArrayBuffer and never changes
(unless you switch to a different ArrayBuffer).

• Normal Arrays can have holes; Typed Arrays can’t.

32.3.4 Converting Typed Arrays to and from normal Arrays
To convert a normal Array to a Typed Array, you pass it to a Typed Array constructor
(which accepts Array-like objects and Typed Arrays) or to «ElementType»Array.from()
(which accepts iterables and Array-like objects). For example:

const ta1 = new Uint8Array([0, 1, 2]);
const ta2 = Uint8Array.from([0, 1, 2]);
assert.deepEqual(ta1, ta2);

To convert a Typed Array to a normal Array, you can use spreading or Array.from()
(because Typed Arrays are iterable):

assert.deepEqual(
[...Uint8Array.of(0, 1, 2)], [0, 1, 2]);

assert.deepEqual(
Array.from(Uint8Array.of(0, 1, 2)), [0, 1, 2]);

32.3.5 Concatenating Typed Arrays
Typed Arrays don’t have a method .concat(), like normal Arrays do. The workaround
is to use their overloaded method .set():

354 32 Typed Arrays: handling binary data (Advanced)

.set(typedArray: TypedArray, offset=0): void

.set(arrayLike: ArrayLike<number>, offset=0): void

It copies the existing typedArray or arrayLike into the receiver, at index offset. Type-
dArray is a fictitious abstract superclass of all concrete Typed Array classes.
The following function uses that method to copy zero or more Typed Arrays (or Array-
like objects) into an instance of resultConstructor:

function concatenate(resultConstructor, ...arrays) {
let totalLength = 0;
for (const arr of arrays) {

totalLength += arr.length;
}
const result = new resultConstructor(totalLength);
let offset = 0;
for (const arr of arrays) {

result.set(arr, offset);
offset += arr.length;

}
return result;

}
assert.deepEqual(

concatenate(Uint8Array, Uint8Array.of(1, 2), [3, 4]),
Uint8Array.of(1, 2, 3, 4));

32.4 Quick references: indices vs. offsets
In preparation for the quick references on ArrayBuffers, Typed Arrays, and DataViews,
we need learn the differences between indices and offsets:

• Indices for the bracket operator []: You can only use non-negative indices (starting
at 0).
In normal Arrays, writing to negative indices creates properties:

const arr = [6, 7];
arr[-1] = 5;
assert.deepEqual(

Object.keys(arr), ['0', '1', '-1']);

In Typed Arrays, writing to negative indices is ignored:
const tarr = Uint8Array.of(6, 7);
tarr[-1] = 5;
assert.deepEqual(

Object.keys(tarr), ['0', '1']);

• Indices for methods of ArrayBuffers, Typed Arrays, and DataViews: Every index
can be negative. If it is, it is added to the length of the entity to produce the actual
index. Therefore, -1 refers to the last element, -2 to the second-last, etc. Methods
of normal Arrays work the same way.

32.5 Quick reference: ArrayBuffers 355

const ui8 = Uint8Array.of(0, 1, 2);
assert.deepEqual(ui8.slice(-1), Uint8Array.of(2));

• Offsets passed to methods of Typed Arrays and DataViews: must be non-negative
– for example:

const dataView = new DataView(new ArrayBuffer(4));
assert.throws(

() => dataView.getUint8(-1),
{

name: 'RangeError',
message: 'Offset is outside the bounds of the DataView',

});

Whether a parameter is an index or an offset can only be determined by looking at docu-
mentation; there is no simple rule.

32.5 Quick reference: ArrayBuffers
ArrayBuffers store binary data, which is meant to be accessed via Typed Arrays and
DataViews.

32.5.1 new ArrayBuffer()

The type signature of the constructor is:
new ArrayBuffer(length: number)

Invoking this constructor via new creates an instancewhose capacity is length bytes. Each
of those bytes is initially 0.
You can’t change the length of an ArrayBuffer; you can only create a new one with a
different length.

32.5.2 Static methods of ArrayBuffer
• ArrayBuffer.isView(arg: any)

Returns true if arg is an object and a view for an ArrayBuffer (i.e., if it is a Typed
Array or a DataView).

32.5.3 Properties of ArrayBuffer.prototype
• get .byteLength(): number

Returns the capacity of this ArrayBuffer in bytes.
• .slice(startIndex: number, endIndex=this.byteLength)

Creates a new ArrayBuffer that contains the bytes of this ArrayBuffer whose in-
dices are greater than or equal to startIndex and less than endIndex. start and
endIndex can be negative (see §32.4 “Quick references: indices vs. offsets”).

356 32 Typed Arrays: handling binary data (Advanced)

32.6 Quick reference: Typed Arrays
The properties of the various Typed Array objects are introduced in two steps:

1. TypedArray: First, we look at the abstract superclass of all Typed Array classes
(which was shown in the class diagram at the beginning of this chapter). I’m call-
ing that superclass TypedArray, but it is not directly accessible from JavaScript.
TypedArray.prototype houses all methods of Typed Arrays.

2. «ElementType»Array: The concrete Typed Array classes are called Uint8Array,
Int16Array, Float32Array, etc. These are the classes that you use via new, .of,
and .from().

32.6.1 Static methods of TypedArray<T>
Both static TypedArraymethods are inherited by its subclasses (Uint8Array, etc.). Type-
dArray is abstract. Therefore, you always use these methods via the subclasses, which
are concrete and can have direct instances.

• .from<S>(source: Iterable<S>|ArrayLike<S>, mapfn?: S => T, thisArg?:
any) : instanceof this

Converts an iterable (including Arrays and Typed Arrays) or an Array-like object
to an instance of this (instanceof this is my invention to express that fact).

assert.deepEqual(
Uint16Array.from([0, 1, 2]),
Uint16Array.of(0, 1, 2));

The optional mapfn lets you transform the elements of source before they become
elements of the result.

assert.deepEqual(
Int16Array.from(Int8Array.of(127, 126, 125), x => x * 2),
Int16Array.of(254, 252, 250));

• .of(...items: number[]): instanceof this

Creates a new instance of this whose elements are items (coerced to the element
type).

assert.deepEqual(
Int16Array.of(-1234, 5, 67),
new Int16Array([-1234, 5, 67]));

32.6.2 Properties of TypedArray<T>.prototype
Indices accepted by Typed Array methods can be negative (they work like traditional
Array methods that way). Offsets must be non-negative. For details, see §32.4 “Quick
references: indices vs. offsets”.

32.6.2.1 Properties specific to Typed Arrays
The following properties are specific to Typed Arrays; normal Arrays don’t have them:

32.6 Quick reference: Typed Arrays 357

• get .buffer(): ArrayBuffer

Returns the buffer backing this Typed Array.
• get .length(): number

Returns the length in elements of this Typed Array’s buffer.
• get .byteLength(): number

Returns the size in bytes of this Typed Array’s buffer.
• get .byteOffset(): number

Returns the offset where this Typed Array “starts” inside its ArrayBuffer.
• .set(typedArray: TypedArray, offset=0): void

• .set(arrayLike: ArrayLike<number>, offset=0): void

Copies all elements of the first parameter to this TypedArray. The element at index
0 of the parameter is written to index offset of this Typed Array (etc.). For more
information on Array-like objects, consult §31.4 “Array-like objects”.

• .subarray(startIndex=0, endIndex=this.length): TypedArray<T>

Returns a new Typed Array that has the same buffer as this Typed Array, but a
(generally) smaller range. If startIndex is non-negative then the first element of
the resulting Typed Array is this[startIndex], the second this[startIndex+1]
(etc.). If startIndex in negative, it is converted appropriately.

32.6.2.2 Array methods
The following methods are basically the same as the methods of normal Arrays:

• .copyWithin(target: number, start: number, end=this.length): this [W, ES6]

• .entries(): Iterable<[number, T]> [R, ES6]

• .every(callback: (value: T, index: number, array: TypedArray<T>) =>
boolean, thisArg?: any): boolean [R, ES5]

• .fill(value: T, start=0, end=this.length): this [W, ES6]

• .filter(callback: (value: T, index: number, array: TypedArray<T>) =>
any, thisArg?: any): T[] [R, ES5]

• .find(predicate: (value: T, index: number, obj: T[]) => boolean, this-
Arg?: any): T | undefined [R, ES6]

• .findIndex(predicate: (value: T, index: number, obj: T[]) => boolean,
thisArg?: any): number [R, ES6]

• .forEach(callback: (value: T, index: number, array: TypedArray<T>) =>
void, thisArg?: any): void [R, ES5]

• .includes(searchElement: T, fromIndex=0): boolean [R, ES2016]

• .indexOf(searchElement: T, fromIndex=0): number [R, ES5]

• .join(separator = ','): string [R, ES1]

• .keys(): Iterable<number> [R, ES6]

• .lastIndexOf(searchElement: T, fromIndex=this.length-1): number [R, ES5]

• .map<U>(mapFunc: (value: T, index: number, array: TypedArray<T>) => U,
thisArg?: any): U[] [R, ES5]

358 32 Typed Arrays: handling binary data (Advanced)

• .reduce<U>(callback: (accumulator: U, element: T, index: number, array:
T[]) => U, init?: U): U [R, ES5]

• .reduceRight<U>(callback: (accumulator: U, element: T, index: number,
array: T[]) => U, init?: U): U [R, ES5]

• .reverse(): this [W, ES1]

• .slice(start=0, end=this.length): T[] [R, ES3]

• .some(callback: (value: T, index: number, array: TypedArray<T>) =>
boolean, thisArg?: any): boolean [R, ES5]

• .sort(compareFunc?: (a: T, b: T) => number): this [W, ES1]

• .toString(): string [R, ES1]

• .values(): Iterable<number> [R, ES6]

For details on how these methods work, please consult §31.12.3 “Methods of Ar-
ray<T>.prototype”.

32.6.3 new «ElementType»Array()

Each Typed Array constructor has a name that follows the pattern «ElementType»Array,
where «ElementType» is one of the element types in the table at the beginning. That
means that there are nine constructors for Typed Arrays:

• Float32Array, Float64Array
• Int8Array, Int16Array, Int32Array
• Uint8Array, Uint8ClampedArray, Uint16Array, Uint32Array

Each constructor has four overloaded versions – it behaves differently depending on how
many arguments it receives and what their types are:

• new «ElementType»Array(buffer: ArrayBuffer, byteOffset=0, length=0)

Creates a new «ElementType»Arraywhose buffer is buffer. It starts accessing the
buffer at the given byteOffset and will have the given length. Note that length
counts elements of the Typed Array (with 1–8 bytes each), not bytes.

• new «ElementType»Array(length=0)

Creates a new «ElementType»Array with the given length and the appropriate
buffer. The buffer’s size in bytes is:

length * «ElementType»Array.BYTES_PER_ELEMENT

• new «ElementType»Array(source: TypedArray)

Creates a new instance of «ElementType»Arraywhose elements have the same val-
ues as the elements of source, but coerced to ElementType.

• new «ElementType»Array(source: ArrayLike<number>)

Creates a new instance of «ElementType»Arraywhose elements have the same val-
ues as the elements of source, but coerced to ElementType. For more information
on Array-like objects, consult §31.4 “Array-like objects”.

32.7 Quick reference: DataViews 359

32.6.4 Static properties of «ElementType»Array
• «ElementType»Array.BYTES_PER_ELEMENT: number

Counts how many bytes are needed to store a single element:
> Uint8Array.BYTES_PER_ELEMENT
1
> Int16Array.BYTES_PER_ELEMENT
2
> Float64Array.BYTES_PER_ELEMENT
8

32.6.5 Properties of «ElementType»Array.prototype
• .BYTES_PER_ELEMENT: number

The same as «ElementType»Array.BYTES_PER_ELEMENT.

32.7 Quick reference: DataViews
32.7.1 new DataView()

• newDataView(buffer:ArrayBuffer,byteOffset=0,byteLength=buffer.
byteLength-byteOffset)

Creates a new DataView whose data is stored in the ArrayBuffer buffer. By de-
fault, the new DataView can access all of buffer. The last two parameters allow
you to change that.

32.7.2 Properties of DataView.prototype
In the remainder of this section, «ElementType» refers to either:

• Float32, Float64
• Int8, Int16, Int32
• Uint8, Uint16, Uint32

These are the properties of DataView.prototype:
• get .buffer()

Returns the ArrayBuffer of this DataView.
• get .byteLength()

Returns how many bytes can be accessed by this DataView.
• get .byteOffset()

Returns at which offset this DataView starts accessing the bytes in its buffer.
• .get«ElementType»(byteOffset: number, littleEndian=false)

Reads a value from the buffer of this DataView.

360 32 Typed Arrays: handling binary data (Advanced)

• .set«ElementType»(byteOffset:number,value:number,littleEndian=false)

Writes value to the buffer of this DataView.

Chapter 33

Maps (Map)

Contents
33.1 Using Maps . 362

33.1.1 Creating Maps . 362
33.1.2 Copying Maps . 362
33.1.3 Working with single entries 362
33.1.4 Determining the size of a Map and clearing it 363
33.1.5 Getting the keys and values of a Map 363
33.1.6 Getting the entries of a Map 363
33.1.7 Listed in insertion order: entries, keys, values 364
33.1.8 Converting between Maps and Objects 364

33.2 Example: Counting characters . 365
33.3 A few more details about the keys of Maps (advanced) 365

33.3.1 What keys are considered equal? 366
33.4 Missing Map operations . 366

33.4.1 Mapping and filtering Maps 366
33.4.2 Combining Maps . 367

33.5 Quick reference: Map<K,V> . 368
33.5.1 Constructor . 368
33.5.2 Map<K,V>.prototype: handling single entries 368
33.5.3 Map<K,V>.prototype: handling all entries 369
33.5.4 Map<K,V>.prototype: iterating and looping 369
33.5.5 Sources of this section . 370

33.6 FAQ: Maps . 370
33.6.1 When should I use a Map, and when should I use an object? . 370
33.6.2 When would I use an object as a key in a Map? 371
33.6.3 Why do Maps preserve the insertion order of entries? 371
33.6.4 Why do Maps have a .size, while Arrays have a .length? . . 371

Before ES6, JavaScript didn’t have a data structure for dictionaries and (ab)used objects
as dictionaries from strings to arbitrary values. ES6 broughtMaps, which are dictionaries
from arbitrary values to arbitrary values.

361

362 33 Maps (Map)

33.1 Using Maps
An instance of Mapmaps keys to values. A single key-value mapping is called an entry.

33.1.1 Creating Maps
There are three common ways of creating Maps.
First, you can use the constructor without any parameters to create an empty Map:

const emptyMap = new Map();
assert.equal(emptyMap.size, 0);

Second, you can pass an iterable (e.g., an Array) over key-value “pairs” (Arrays with two
elements) to the constructor:

const map = new Map([
[1, 'one'],
[2, 'two'],
[3, 'three'], // trailing comma is ignored

]);

Third, the .set()method adds entries to a Map and is chainable:
const map = new Map()

.set(1, 'one')

.set(2, 'two')

.set(3, 'three');

33.1.2 Copying Maps
As we’ll see later, Maps are also iterables over key-value pairs. Therefore, you can use
the constructor to create a copy of a Map. That copy is shallow: keys and values are the
same; they are not duplicated.

const original = new Map()
.set(false, 'no')
.set(true, 'yes');

const copy = new Map(original);
assert.deepEqual(original, copy);

33.1.3 Working with single entries
.set() and .get() are for writing and reading values (given keys).

const map = new Map();

map.set('foo', 123);

assert.equal(map.get('foo'), 123);
// Unknown key:

33.1 Using Maps 363

assert.equal(map.get('bar'), undefined);
// Use the default value '' if an entry is missing:
assert.equal(map.get('bar') || '', '');

.has() checks if a Map has an entry with a given key. .delete() removes entries.
const map = new Map([['foo', 123]]);

assert.equal(map.has('foo'), true);
assert.equal(map.delete('foo'), true)
assert.equal(map.has('foo'), false)

33.1.4 Determining the size of a Map and clearing it
.size contains the number of entries in a Map. .clear() removes all entries of a Map.

const map = new Map()
.set('foo', true)
.set('bar', false)

;

assert.equal(map.size, 2)
map.clear();
assert.equal(map.size, 0)

33.1.5 Getting the keys and values of a Map
.keys() returns an iterable over the keys of a Map:

const map = new Map()
.set(false, 'no')
.set(true, 'yes')

;

for (const key of map.keys()) {
console.log(key);

}
// Output:
// false
// true

We can use spreading (...) to convert the iterable returned by .keys() to an Array:
assert.deepEqual(

[...map.keys()],
[false, true]);

.values() works like .keys(), but for values instead of keys.

33.1.6 Getting the entries of a Map
.entries() returns an iterable over the entries of a Map:

364 33 Maps (Map)

const map = new Map()
.set(false, 'no')
.set(true, 'yes')

;

for (const entry of map.entries()) {
console.log(entry);

}
// Output:
// [false, 'no']
// [true, 'yes']

Spreading (...) converts the iterable returned by .entries() to an Array:
assert.deepEqual(

[...map.entries()],
[[false, 'no'], [true, 'yes']]);

Map instances are also iterables over entries. In the following code, we use destructuring
to access the keys and values of map:

for (const [key, value] of map) {
console.log(key, value);

}
// Output:
// false, 'no'
// true, 'yes'

33.1.7 Listed in insertion order: entries, keys, values
Maps record in which order entries were created and honor that order when listing en-
tries, keys, or values:

const map1 = new Map([
['a', 1],
['b', 2],

]);
assert.deepEqual(

[...map1.keys()], ['a', 'b']);

const map2 = new Map([
['b', 2],
['a', 1],

]);
assert.deepEqual(

[...map2.keys()], ['b', 'a']);

33.1.8 Converting between Maps and Objects
As long as a Map only uses strings and symbols as keys, you can convert it to an object
(via Object.fromEntries()):

33.2 Example: Counting characters 365

const map = new Map([
['a', 1],
['b', 2],

]);
const obj = Object.fromEntries(map);
assert.deepEqual(

obj, {a: 1, b: 2});

You can also convert an object to a Map with string or symbol keys (via Ob-
ject.entries()):

const obj = {
a: 1,
b: 2,

};
const map = new Map(Object.entries(obj));
assert.deepEqual(

map, new Map([['a', 1], ['b', 2]]));

33.2 Example: Counting characters
countChars() returns a Map that maps characters to numbers of occurrences.

function countChars(chars) {
const charCounts = new Map();
for (let ch of chars) {

ch = ch.toLowerCase();
const prevCount = charCounts.get(ch) || 0;
charCounts.set(ch, prevCount+1);

}
return charCounts;

}

const result = countChars('AaBccc');
assert.deepEqual(

[...result],
[

['a', 2],
['b', 1],
['c', 3],

]
);

33.3 A fewmore details about the keys ofMaps (advanced)
Any value can be a key, even an object:

const map = new Map();

366 33 Maps (Map)

const KEY1 = {};
const KEY2 = {};

map.set(KEY1, 'hello');
map.set(KEY2, 'world');

assert.equal(map.get(KEY1), 'hello');
assert.equal(map.get(KEY2), 'world');

33.3.1 What keys are considered equal?
Most Map operations need to check whether a value is equal to one of the keys. They do
so via the internal operation SameValueZero, which works like === but considers NaN to
be equal to itself.
As a consequence, you can use NaN as a key in Maps, just like any other value:

> const map = new Map();

> map.set(NaN, 123);
> map.get(NaN)
123

Different objects are always considered to be different. That is something that can’t be
changed (yet – configuring key equality is on TC39’s long-term roadmap).

> new Map().set({}, 1).set({}, 2).size
2

33.4 Missing Map operations
33.4.1 Mapping and filtering Maps
You can .map() and .filter() an Array, but there are no such operations for aMap. The
solution is:

1. Convert the Map into an Array of [key, value] pairs.
2. Map or filter the Array.
3. Convert the result back to a Map.

I’ll use the following Map to demonstrate how that works.
const originalMap = new Map()
.set(1, 'a')
.set(2, 'b')
.set(3, 'c');

Mapping originalMap:
const mappedMap = new Map(// step 3

[...originalMap] // step 1
.map(([k, v]) => [k * 2, '_' + v]) // step 2

http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero

33.4 Missing Map operations 367

);
assert.deepEqual([...mappedMap],

[[2,'_a'], [4,'_b'], [6,'_c']]);

Filtering originalMap:

const filteredMap = new Map(// step 3
[...originalMap] // step 1
.filter(([k, v]) => k < 3) // step 2

);
assert.deepEqual([...filteredMap],

[[1,'a'], [2,'b']]);

Step 1 is performed by spreading (...) in the Array literal.

33.4.2 Combining Maps
There are no methods for combining Maps, which is why we must use a workaround
that is similar to the one from the previous section.

Let’s combine the following two Maps:

const map1 = new Map()
.set(1, '1a')
.set(2, '1b')
.set(3, '1c')

;

const map2 = new Map()
.set(2, '2b')
.set(3, '2c')
.set(4, '2d')

;

To combine map1 and map2, we turn them intoArrays via spreading (...) and concatenate
those Arrays. Afterward, we convert the result back to a Map. All of that is done in line
A.

const combinedMap = new Map([...map1, ...map2]); // (A)
assert.deepEqual(

[...combinedMap], // convert to Array for comparison
[[1, '1a'],

[2, '2b'],
[3, '2c'],
[4, '2d']]

);

Exercise: Combining two Maps
exercises/maps/combine_maps_test.mjs

368 33 Maps (Map)

33.5 Quick reference: Map<K,V>
Note: For the sake of conciseness, I’m pretending that all keys have the same type K and
that all values have the same type V.

33.5.1 Constructor
• new Map<K, V>(entries?: Iterable<[K, V]>) [ES6]

If you don’t provide the parameter entries, then an empty Map is created. If you
do provide an iterable over [key, value] pairs, then those pairs are added as entries
to the Map. For example:

const map = new Map([
[1, 'one'],
[2, 'two'],
[3, 'three'], // trailing comma is ignored

]);

33.5.2 Map<K,V>.prototype: handling single entries
• .get(key: K): V [ES6]

Returns the value that key is mapped to in this Map. If there is no key key in this
Map, undefined is returned.

const map = new Map([[1, 'one'], [2, 'two']]);
assert.equal(map.get(1), 'one');
assert.equal(map.get(5), undefined);

• .set(key: K, value: V): this [ES6]

Maps the given key to the given value. If there is already an entry whose key is
key, it is updated. Otherwise, a new entry is created. This method returns this,
which means that you can chain it.

const map = new Map([[1, 'one'], [2, 'two']]);
map.set(1, 'ONE!')

.set(3, 'THREE!');
assert.deepEqual(

[...map.entries()],
[[1, 'ONE!'], [2, 'two'], [3, 'THREE!']]);

• .has(key: K): boolean [ES6]

Returns whether the given key exists in this Map.

const map = new Map([[1, 'one'], [2, 'two']]);
assert.equal(map.has(1), true); // key exists
assert.equal(map.has(5), false); // key does not exist

• .delete(key: K): boolean [ES6]

33.5 Quick reference: Map<K,V> 369

If there is an entry whose key is key, it is removed and true is returned. Otherwise,
nothing happens and false is returned.

const map = new Map([[1, 'one'], [2, 'two']]);
assert.equal(map.delete(1), true);
assert.equal(map.delete(5), false); // nothing happens
assert.deepEqual(

[...map.entries()],
[[2, 'two']]);

33.5.3 Map<K,V>.prototype: handling all entries
• get .size: number [ES6]

Returns how many entries this Map has.
const map = new Map([[1, 'one'], [2, 'two']]);
assert.equal(map.size, 2);

• .clear(): void [ES6]

Removes all entries from this Map.
const map = new Map([[1, 'one'], [2, 'two']]);
assert.equal(map.size, 2);
map.clear();
assert.equal(map.size, 0);

33.5.4 Map<K,V>.prototype: iterating and looping
Both iterating and looping happen in the order in which entries were added to a Map.

• .entries(): Iterable<[K,V]> [ES6]

Returns an iterable with one [key, value] pair for each entry in this Map. The pairs
are Arrays of length 2.

const map = new Map([[1, 'one'], [2, 'two']]);
for (const entry of map.entries()) {

console.log(entry);
}
// Output:
// [1, 'one']
// [2, 'two']

• .forEach(callback: (value: V, key: K, theMap: Map<K,V>) => void, this-
Arg?: any): void [ES6]

The first parameter is a callback that is invoked once for each entry in this Map. If
thisArg is provided, this is set to it for each invocation. Otherwise, this is set to
undefined.

const map = new Map([[1, 'one'], [2, 'two']]);
map.forEach((value, key) => console.log(value, key));

370 33 Maps (Map)

// Output:
// 'one', 1
// 'two', 2

• .keys(): Iterable<K> [ES6]

Returns an iterable over all keys in this Map.
const map = new Map([[1, 'one'], [2, 'two']]);
for (const key of map.keys()) {

console.log(key);
}
// Output:
// 1
// 2

• .values(): Iterable<V> [ES6]

Returns an iterable over all values in this Map.
const map = new Map([[1, 'one'], [2, 'two']]);
for (const value of map.values()) {

console.log(value);
}
// Output:
// 'one'
// 'two'

• [Symbol.iterator](): Iterable<[K,V]> [ES6]

The default way of iterating over Maps. Same as .entries().
const map = new Map([[1, 'one'], [2, 'two']]);
for (const [key, value] of map) {

console.log(key, value);
}
// Output:
// 1, 'one'
// 2, 'two'

33.5.5 Sources of this section
• TypeScript’s built-in typings

33.6 FAQ: Maps
33.6.1 When should I use a Map, and when should I use an object?
If you need a dictionary-like data structurewith keys that are neither strings nor symbols,
you have no choice: you must use a Map.
If, however, your keys are either strings or symbols, you must decide whether or not to
use an object. A rough general guideline is:

https://github.com/Microsoft/TypeScript/blob/master/lib/

33.6 FAQ: Maps 371

• Is there a fixed set of keys (known at development time)?
Then use an object obj and access the values via fixed keys:

const value = obj.key;

• Can the set of keys change at runtime?
Then use a Map map and access the values via keys stored in variables:

const theKey = 123;
map.get(theKey);

33.6.2 When would I use an object as a key in a Map?
You normally want Map keys to be compared by value (two keys are considered equal
if they have the same content). That excludes objects. However, there is one use case for
objects as keys: externally attaching data to objects. But that use case is served better by
WeakMaps, where entries don’t prevent keys from being garbage-collected (for details,
consult the next chapter).

33.6.3 Why do Maps preserve the insertion order of entries?
In principle, Maps are unordered. The main reason for ordering entries is so that oper-
ations that list entries, keys, or values are deterministic. That helps, for example, with
testing.

33.6.4 Why do Maps have a .size, while Arrays have a .length?
In JavaScript, indexable sequences (such as Arrays and strings) have a .length, while
unindexed collections (such as Maps and Sets) have a .size:

• .length is based on indices; it is always the highest index plus one.
• .size counts the number of elements in a collection.

Quiz
See quiz app.

372 33 Maps (Map)

Chapter 34

WeakMaps (WeakMap)

Contents
34.1 WeakMaps are black boxes . 373
34.2 The keys of a WeakMap are weakly held 374

34.2.1 All WeakMap keys must be objects 374
34.2.2 Use case: attaching values to objects 374

34.3 Examples . 375
34.3.1 Caching computed results via WeakMaps 375
34.3.2 Keeping private data in WeakMaps 375

34.4 WeakMap API . 376

WeakMaps are similar to Maps, with the following differences:
• They are black boxes, where a value can only be accessed if you have both the
WeakMap and the key.

• The keys of a WeakMap are weakly held: if an object is a key in a WeakMap, it can
still be garbage-collected. That lets us use WeakMaps to attach data to objects.

The next two sections examine in more detail what that means.

34.1 WeakMaps are black boxes
It is impossible to inspect what’s inside a WeakMap:

• For example, you can’t iterate or loop over keys, values or entries. And you can’t
compute the size.

• Additionally, you can’t clear a WeakMap either – you have to create a fresh in-
stance.

These restrictions enable a security property. Quoting Mark Miller:
The mapping from weakmap/key pair value can only be observed or af-
fected by someone who has both the weakmap and the key. With clear(),

373

https://github.com/tc39/tc39-notes/blob/master/meetings/2014-11/nov-19.md#412-should-weakmapweakset-have-a-clear-method-markm

374 34 WeakMaps (WeakMap)

someonewith only theWeakMapwould’ve been able to affect theWeakMap-
and-key-to-value mapping.

34.2 The keys of a WeakMap are weakly held
The keys of aWeakMap are said to beweakly held: Normally if one object refers to another
one, then the latter object can’t be garbage-collected as long as the former exists. With a
WeakMap, that is different: If an object is a key and not referred to elsewhere, it can be
garbage-collected while the WeakMap still exists. That also leads to the corresponding
entry being removed (but there is no way to observe that).

34.2.1 All WeakMap keys must be objects
All WeakMap keys must be objects. You get an error if you use a primitive value:

> const wm = new WeakMap();
> wm.set(123, 'test')
TypeError: Invalid value used as weak map key

With primitive values as keys, WeakMaps wouldn’t be black boxes anymore. But given
that primitive values are never garbage-collected, you don’t profit fromweakly held keys
anyway, and can just as well use a normal Map.

34.2.2 Use case: attaching values to objects
This is the main use case for WeakMaps: you can use them to externally attach values to
objects – for example:

const wm = new WeakMap();
{

const obj = {};
wm.set(obj, 'attachedValue'); // (A)

}
// (B)

In line A, we attach a value to obj. In line B, obj can already be garbage-collected, even
though wm still exists. This technique of attaching a value to an object is equivalent to a
property of that object being stored externally. If wm were a property, the previous code
would look as follows:

{
const obj = {};
obj.wm = 'attachedValue';

}

34.3 Examples 375

34.3 Examples
34.3.1 Caching computed results via WeakMaps
With WeakMaps, you can associate previously computed results with objects without
having to worry about memory management. The following function countOwnKeys()
is an example: it caches previous results in the WeakMap cache.

const cache = new WeakMap();
function countOwnKeys(obj) {

if (cache.has(obj)) {
return [cache.get(obj), 'cached'];

} else {
const count = Object.keys(obj).length;
cache.set(obj, count);
return [count, 'computed'];

}
}

If we use this function with an object obj, you can see that the result is only computed
for the first invocation, while a cached value is used for the second invocation:

> const obj = { foo: 1, bar: 2};
> countOwnKeys(obj)
[2, 'computed']
> countOwnKeys(obj)
[2, 'cached']

34.3.2 Keeping private data in WeakMaps
In the following code, the WeakMaps _counter and _action are used to store the values
of virtual properties of instances of Countdown:

const _counter = new WeakMap();
const _action = new WeakMap();

class Countdown {
constructor(counter, action) {

_counter.set(this, counter);
_action.set(this, action);

}
dec() {

let counter = _counter.get(this);
counter--;
_counter.set(this, counter);
if (counter === 0) {

_action.get(this)();
}

}
}

376 34 WeakMaps (WeakMap)

// The two pseudo-properties are truly private:
assert.deepEqual(

Object.keys(new Countdown()),
[]);

This is how Countdown is used:
let invoked = false;

const cd = new Countdown(3, () => invoked = true);

cd.dec(); assert.equal(invoked, false);
cd.dec(); assert.equal(invoked, false);
cd.dec(); assert.equal(invoked, true);

Exercise: WeakMaps for private data
exercises/weakmaps/weakmaps_private_data_test.mjs

34.4 WeakMap API
The constructor and the four methods of WeakMapwork the same as their Map equivalents:

• new WeakMap<K, V>(entries?: Iterable<[K, V]>) [ES6]

• .delete(key: K) : boolean [ES6]

• .get(key: K) : V [ES6]

• .has(key: K) : boolean [ES6]

• .set(key: K, value: V) : this [ES6]

Quiz
See quiz app.

Chapter 35

Sets (Set)

Contents
35.1 Using Sets . 378

35.1.1 Creating Sets . 378
35.1.2 Adding, removing, checking membership 378
35.1.3 Determining the size of a Set and clearing it 378
35.1.4 Iterating over Sets . 379

35.2 Examples of using Sets . 379
35.2.1 Removing duplicates from an Array 379
35.2.2 Creating a set of Unicode characters (code points) 379

35.3 What Set elements are considered equal? 379
35.4 Missing Set operations . 380

35.4.1 Union (a ∪ b) . 380
35.4.2 Intersection (a ∩ b) . 380
35.4.3 Difference (a \ b) . 381
35.4.4 Mapping over Sets . 381
35.4.5 Filtering Sets . 381

35.5 Quick reference: Set<T> . 381
35.5.1 Constructor . 381
35.5.2 Set<T>.prototype: single Set elements 381
35.5.3 Set<T>.prototype: all Set elements 382
35.5.4 Set<T>.prototype: iterating and looping 382
35.5.5 Symmetry with Map . 383

35.6 FAQ: Sets . 383
35.6.1 Why do Sets have a .size, while Arrays have a .length? . . . 383

Before ES6, JavaScript didn’t have a data structure for sets. Instead, two workarounds
were used:

• The keys of an object were used as a set of strings.

377

378 35 Sets (Set)

• Arrays were used as sets of arbitrary values. The downside is that checking mem-
bership (if an Array contains a value) is slower.

Since ES6, JavaScript has the data structure Set, which can contain arbitrary values and
performs membership checks quickly.

35.1 Using Sets
35.1.1 Creating Sets
There are three common ways of creating Sets.
First, you can use the constructor without any parameters to create an empty Set:

const emptySet = new Set();
assert.equal(emptySet.size, 0);

Second, you can pass an iterable (e.g., an Array) to the constructor. The iterated values
become elements of the new Set:

const set = new Set(['red', 'green', 'blue']);

Third, the .add()method adds elements to a Set and is chainable:
const set = new Set()
.add('red')
.add('green')
.add('blue');

35.1.2 Adding, removing, checking membership
.add() adds an element to a Set.

const set = new Set();
set.add('red');

.has() checks if an element is a member of a Set.
assert.equal(set.has('red'), true);

.delete() removes an element from a Set.
assert.equal(set.delete('red'), true); // there was a deletion
assert.equal(set.has('red'), false);

35.1.3 Determining the size of a Set and clearing it
.size contains the number of elements in a Set.

const set = new Set()
.add('foo')
.add('bar');

assert.equal(set.size, 2)

.clear() removes all elements of a Set.

35.2 Examples of using Sets 379

set.clear();
assert.equal(set.size, 0)

35.1.4 Iterating over Sets
Sets are iterable and the for-of loop works as you’d expect:

const set = new Set(['red', 'green', 'blue']);
for (const x of set) {

console.log(x);
}
// Output:
// 'red'
// 'green'
// 'blue'

As you can see, Sets preserve insertion order. That is, elements are always iterated over in
the order in which they were added.

Given that Sets are iterable, you can use spreading (...) to convert them to Arrays:

const set = new Set(['red', 'green', 'blue']);
const arr = [...set]; // ['red', 'green', 'blue']

35.2 Examples of using Sets
35.2.1 Removing duplicates from an Array
Converting an Array to a Set and back, removes duplicates from the Array:

assert.deepEqual(
[...new Set([1, 2, 1, 2, 3, 3, 3])],
[1, 2, 3]);

35.2.2 Creating a set of Unicode characters (code points)
Strings are iterable and can therefore be used as parameters for new Set():

assert.deepEqual(
new Set('abc'),
new Set(['a', 'b', 'c']));

35.3 What Set elements are considered equal?
As with Map keys, Set elements are compared similarly to ===, with the exception of NaN
being equal to itself.

> const set = new Set([NaN, NaN, NaN]);
> set.size
1

380 35 Sets (Set)

> set.has(NaN)
true

As with ===, two different objects are never considered equal (and there is no way to
change that at the moment):

> const set = new Set();

> set.add({});
> set.size
1

> set.add({});
> set.size
2

35.4 Missing Set operations
Sets are missing several common operations. Such an operation can usually be imple-
mented by:

• Converting the input Sets to Arrays by spreading into Array literals.
• Performing the operation on Arrays.
• Converting the result to a Set and returning it.

35.4.1 Union (a ∪ b)
Computing the union of two Sets a and bmeans creating a Set that contains the elements
of both a and b.

const a = new Set([1,2,3]);
const b = new Set([4,3,2]);
// Use spreading to concatenate two iterables
const union = new Set([...a, ...b]);

assert.deepEqual([...union], [1, 2, 3, 4]);

35.4.2 Intersection (a ∩ b)
Computing the intersection of two Sets a and bmeans creating a Set that contains those
elements of a that are also in b.

const a = new Set([1,2,3]);
const b = new Set([4,3,2]);
const intersection = new Set(

[...a].filter(x => b.has(x)));

assert.deepEqual([...intersection], [2, 3]);

35.5 Quick reference: Set<T> 381

35.4.3 Difference (a \ b)
Computing the difference between two Sets a and b means creating a Set that contains
those elements of a that are not in b. This operation is also sometimes called minus (−).

const a = new Set([1,2,3]);
const b = new Set([4,3,2]);
const difference = new Set(

[...a].filter(x => !b.has(x)));

assert.deepEqual([...difference], [1]);

35.4.4 Mapping over Sets
Sets don’t have a method .map(). But we can borrow the one that Arrays have:

const set = new Set([1, 2, 3]);
const mappedSet = new Set([...set].map(x => x * 2));

// Convert mappedSet to an Array to check what’s inside it
assert.deepEqual([...mappedSet], [2, 4, 6]);

35.4.5 Filtering Sets
We can’t directly .filter() Sets, so we need to use the corresponding Array method:

const set = new Set([1, 2, 3, 4, 5]);
const filteredSet = new Set([...set].filter(x => (x % 2) === 0));

assert.deepEqual([...filteredSet], [2, 4]);

35.5 Quick reference: Set<T>
35.5.1 Constructor

• new Set<T>(values?: Iterable<T>) [ES6]

If you don’t provide the parameter values, then an empty Set is created. If you do,
then the iterated values are added as elements to the Set. For example:

const set = new Set(['red', 'green', 'blue']);

35.5.2 Set<T>.prototype: single Set elements
• .add(value: T): this [ES6]

Adds value to this Set. This method returns this, which means that it can be
chained.

const set = new Set(['red']);
set.add('green').add('blue');
assert.deepEqual([...set], ['red', 'green', 'blue']);

382 35 Sets (Set)

• .delete(value: T): boolean [ES6]

Removes value from this Set. Returns true if something was deleted and false,
otherwise.

const set = new Set(['red', 'green', 'blue']);
assert.equal(set.delete('red'), true); // there was a deletion
assert.deepEqual([...set], ['green', 'blue']);

• .has(value: T): boolean [ES6]

Checks whether value is in this Set.
const set = new Set(['red', 'green']);
assert.equal(set.has('red'), true);
assert.equal(set.has('blue'), false);

35.5.3 Set<T>.prototype: all Set elements
• get .size: number [ES6]

Returns how many elements there are in this Set.
const set = new Set(['red', 'green', 'blue']);
assert.equal(set.size, 3);

• .clear(): void [ES6]

Removes all elements from this Set.
const set = new Set(['red', 'green', 'blue']);
assert.equal(set.size, 3);
set.clear();
assert.equal(set.size, 0);

35.5.4 Set<T>.prototype: iterating and looping
• .values(): Iterable<T> [ES6]

Returns an iterable over all elements of this Set.
const set = new Set(['red', 'green']);
for (const x of set.values()) {

console.log(x);
}
// Output:
// 'red'
// 'green'

• [Symbol.iterator](): Iterable<T> [ES6]

Default way of iterating over Sets. Same as .values().
const set = new Set(['red', 'green']);
for (const x of set) {

console.log(x);

35.6 FAQ: Sets 383

}
// Output:
// 'red'
// 'green'

• .forEach(callback: (value: T, key: T, theSet: Set<T>) => void, thisArg?:
any): void [ES6]

Feeds each element of this Set to callback(). value and key both contain the cur-
rent element. This redundancy was introduced so that this callback has the same
type signature as the callback of Map.prototype.forEach().
You can specify the this of callback via thisArg. If you omit it, this is undefined.

const set = new Set(['red', 'green']);
set.forEach(x => console.log(x));
// Output:
// 'red'
// 'green'

35.5.5 Symmetry with Map

The following two methods mainly exist so that Sets and Maps have similar interfaces.
Each Set element is handled as if it were a Map entry whose key and value are both the
element.

• Set.prototype.entries(): Iterable<[T,T]> [ES6]

• Set.prototype.keys(): Iterable<T> [ES6]

.entries() enables you to convert a Set to a Map:
const set = new Set(['a', 'b', 'c']);
const map = new Map(set.entries());
assert.deepEqual(

[...map.entries()],
[['a','a'], ['b','b'], ['c','c']]);

35.6 FAQ: Sets
35.6.1 Why do Sets have a .size, while Arrays have a .length?
The answer to this question is given in §33.6.4 “Why doMaps have a .size, while Arrays
have a .length?”.

Quiz
See quiz app.

384 35 Sets (Set)

Chapter 36

WeakSets (WeakSet)

Contents
36.1 Example: Marking objects as safe to use with a method 385
36.2 WeakSet API . 386

WeakSets are similar to Sets, with the following differences:
• They can hold objects without preventing those objects from being garbage-
collected.

• They are black boxes: we only get any data out of a WeakSet if we have both the
WeakSet and a value. The only methods that are supported are .add(), .delete(),
.has(). Consult the section on WeakMaps as black boxes for an explanation of
why WeakSets don’t allow iteration, looping, and clearing.

Given that we can’t iterate over their elements, there are not that many use cases for
WeakSets. They do enable us to mark objects.

36.1 Example: Marking objects as safe to use with a
method

Domenic Denicola shows how a class Foo can ensure that its methods are only applied
to instances that were created by it:

const foos = new WeakSet();

class Foo {
constructor() {

foos.add(this);
}

method() {
if (!foos.has(this)) {

385

https://mail.mozilla.org/pipermail/es-discuss/2015-June/043027.html

386 36 WeakSets (WeakSet)

throw new TypeError('Incompatible object!');
}

}
}

const foo = new Foo();
foo.method(); // works

assert.throws(
() => {

const obj = {};
Foo.prototype.method.call(obj); // throws an exception

},
TypeError

);

36.2 WeakSet API
The constructor and the threemethods of WeakSetwork the same as their Set equivalents:

• new WeakSet<T>(values?: Iterable<T>) [ES6]

• .add(value: T): this [ES6]

• .delete(value: T): boolean [ES6]

• .has(value: T): boolean [ES6]

Chapter 37

Destructuring

Contents
37.1 A first taste of destructuring . 388
37.2 Constructing vs. extracting . 388
37.3 Where can we destructure? . 389
37.4 Object-destructuring . 390

37.4.1 Property value shorthands . 390
37.4.2 Rest properties . 391
37.4.3 Syntax pitfall: assigning via object destructuring 391

37.5 Array-destructuring . 391
37.5.1 Array-destructuring works with any iterable 392
37.5.2 Rest elements . 392

37.6 Examples of destructuring . 392
37.6.1 Array-destructuring: swapping variable values 392
37.6.2 Array-destructuring: operations that return Arrays 393
37.6.3 Object-destructuring: multiple return values 393

37.7 What happens if a pattern part does not match anything? 394
37.7.1 Object-destructuring and missing properties 394
37.7.2 Array-destructuring and missing elements 394

37.8 What values can’t be destructured? 394
37.8.1 You can’t object-destructure undefined and null 394
37.8.2 You can’t Array-destructure non-iterable values 395

37.9 (Advanced) . 395
37.10Default values . 395

37.10.1 Default values in Array-destructuring 396
37.10.2 Default values in object-destructuring 396

37.11Parameter definitions are similar to destructuring 396
37.12Nested destructuring . 397

387

388 37 Destructuring

37.1 A first taste of destructuring
With normal assignment, you extract one piece of data at a time – for example:

const arr = ['a', 'b', 'c'];
const x = arr[0]; // extract
const y = arr[1]; // extract

With destructuring, you can extract multiple pieces of data at the same time via patterns
in locations that receive data. The left-hand side of = in the previous code is one such
location. In the following code, the square brackets in line A are a destructuring pattern:

const arr = ['a', 'b', 'c'];
const [x, y] = arr; // (A)
assert.equal(x, 'a');
assert.equal(y, 'b');

This code does the same as the previous code.

Note that the pattern is “smaller” than the data: we are only extracting what we need.

37.2 Constructing vs. extracting
In order to understand what destructuring is, consider that JavaScript has two kinds of
operations that are opposites:

• You can construct compound data, for example, by setting properties and via object
literals.

• You can extract data out of compound data, for example, by getting properties.

Constructing data looks as follows:

// Constructing: one property at a time
const jane1 = {};
jane1.first = 'Jane';
jane1.last = 'Doe';

// Constructing: multiple properties
const jane2 = {

first: 'Jane',
last: 'Doe',

};

assert.deepEqual(jane1, jane2);

Extracting data looks as follows:

const jane = {
first: 'Jane',
last: 'Doe',

};

37.3 Where can we destructure? 389

// Extracting: one property at a time
const f1 = jane.first;
const l1 = jane.last;
assert.equal(f1, 'Jane');
assert.equal(l1, 'Doe');

// Extracting: multiple properties (NEW!)
const {first: f2, last: l2} = jane; // (A)
assert.equal(f2, 'Jane');
assert.equal(l2, 'Doe');

The operation in line A is new: we declare two variables f2 and l2 and initialize them
via destructuring (multivalue extraction).

The following part of line A is a destructuring pattern:

{first: f2, last: l2}

Destructuring patterns are syntactically similar to the literals that are used formultivalue
construction. But they appear where data is received (e.g., at the left-hand side of assign-
ments), not where data is created (e.g., at the right-hand side of assignments).

37.3 Where can we destructure?
Destructuring patterns can be used at “data sink locations” such as:

• Variable declarations:

const [a] = ['x'];
assert.equal(a, 'x');

let [b] = ['y'];
assert.equal(b, 'y');

• Assignments:

let b;
[b] = ['z'];
assert.equal(b, 'z');

• Parameter definitions:

const f = ([x]) => x;
assert.equal(f(['a']), 'a');

Note that variable declarations include const and let declarations in for-of loops:

const arr = ['a', 'b'];
for (const [index, element] of arr.entries()) {

console.log(index, element);
}
// Output:

390 37 Destructuring

// 0, 'a'
// 1, 'b'

In the next two sections, we’ll look deeper into the two kinds of destructuring: object-
destructuring and Array-destructuring.

37.4 Object-destructuring
Object-destructuring lets you batch-extract values of properties via patterns that look like
object literals:

const address = {
street: 'Evergreen Terrace',
number: '742',
city: 'Springfield',
state: 'NT',
zip: '49007',

};

const { street: s, city: c } = address;
assert.equal(s, 'Evergreen Terrace');
assert.equal(c, 'Springfield');

You can think of the pattern as a transparent sheet that youplace over the data: the pattern
key 'street' has a match in the data. Therefore, the data value 'Evergreen Terrace'
is assigned to the pattern variable s.
You can also object-destructure primitive values:

const {length: len} = 'abc';
assert.equal(len, 3);

And you can object-destructure Arrays:
const {0:x, 2:y} = ['a', 'b', 'c'];
assert.equal(x, 'a');
assert.equal(y, 'c');

Why does that work? Array indices are also properties.

37.4.1 Property value shorthands
Object literals support property value shorthands and so do object patterns:

const { street, city } = address;
assert.equal(street, 'Evergreen Terrace');
assert.equal(city, 'Springfield');

Exercise: Object-destructuring
exercises/destructuring/object_destructuring_exrc.mjs

37.5 Array-destructuring 391

37.4.2 Rest properties
In object literals, you can have spread properties. In object patterns, you can have rest
properties (which must come last):

const obj = { a: 1, b: 2, c: 3 };
const { a: propValue, ...remaining } = obj; // (A)

assert.equal(propValue, 1);
assert.deepEqual(remaining, {b:2, c:3});

A rest property variable, such as remaining (line A), is assigned an object with all data
properties whose keys are not mentioned in the pattern.
remaining can also be viewed as the result of non-destructively removing property a
from obj.

37.4.3 Syntax pitfall: assigning via object destructuring
If we object-destructure in an assignment, we are facing a pitfall caused by syntactic am-
biguity – you can’t start a statement with a curly brace because then JavaScript thinks
you are starting a block:

let prop;
assert.throws(

() => eval("{prop} = { prop: 'hello' };"),
{

name: 'SyntaxError',
message: 'Unexpected token =',

});

Why eval()?
eval() delays parsing (and therefore the SyntaxError) until the callback of as-
sert.throws() is executed. If we didn’t use it, we’d already get an error when this
code is parsed and assert.throws() wouldn’t even be executed.

The workaround is to put the whole assignment in parentheses:
let prop;
({prop} = { prop: 'hello' });
assert.equal(prop, 'hello');

37.5 Array-destructuring
Array-destructuring lets you batch-extract values of Array elements via patterns that look
like Array literals:

const [x, y] = ['a', 'b'];
assert.equal(x, 'a');

392 37 Destructuring

assert.equal(y, 'b');

You can skip elements by mentioning holes inside Array patterns:
const [, x, y] = ['a', 'b', 'c']; // (A)
assert.equal(x, 'b');
assert.equal(y, 'c');

The first element of the Array pattern in line A is a hole, which is why the Array element
at index 0 is ignored.

37.5.1 Array-destructuring works with any iterable
Array-destructuring can be applied to any value that is iterable, not just to Arrays:

// Sets are iterable
const mySet = new Set().add('a').add('b').add('c');
const [first, second] = mySet;
assert.equal(first, 'a');
assert.equal(second, 'b');

// Strings are iterable
const [a, b] = 'xyz';
assert.equal(a, 'x');
assert.equal(b, 'y');

37.5.2 Rest elements
In Array literals, you can have spread elements. In Array patterns, you can have rest
elements (which must come last):

const [x, y, ...remaining] = ['a', 'b', 'c', 'd']; // (A)

assert.equal(x, 'a');
assert.equal(y, 'b');
assert.deepEqual(remaining, ['c', 'd']);

A rest element variable, such as remaining (lineA), is assigned anArraywith all elements
of the destructured value that were not mentioned yet.

37.6 Examples of destructuring
37.6.1 Array-destructuring: swapping variable values
You can use Array-destructuring to swap the values of two variables without needing a
temporary variable:

let x = 'a';
let y = 'b';

[x,y] = [y,x]; // swap

37.6 Examples of destructuring 393

assert.equal(x, 'b');
assert.equal(y, 'a');

37.6.2 Array-destructuring: operations that return Arrays
Array-destructuring is useful when operations return Arrays, as does, for example, the
regular expression method .exec():

// Skip the element at index 0 (the whole match):
const [, year, month, day] =

/^([0-9]{4})-([0-9]{2})-([0-9]{2})$/
.exec('2999-12-31');

assert.equal(year, '2999');
assert.equal(month, '12');
assert.equal(day, '31');

37.6.3 Object-destructuring: multiple return values
Destructuring is very useful if a function returns multiple values – either packaged as an
Array or packaged as an object.
Consider a function findElement() that finds elements in an Array:

findElement(array, (value, index) => «boolean expression»)

Its second parameter is a function that receives the value and index of an element and
returns a boolean indicating if this is the element the caller is looking for.
We are now facedwith a dilemma: Should findElement() return the value of the element
it found or the index? One solution would be to create two separate functions, but that
would result in duplicated code because both functions would be very similar.
The following implementation avoids duplication by returning an object that contains
both index and value of the element that is found:

function findElement(arr, predicate) {
for (let index=0; index < arr.length; index++) {

const value = arr[index];
if (predicate(value)) {

// We found something:
return { value, index };

}
}
// We didn’t find anything:
return { value: undefined, index: -1 };

}

Destructuring helps us with processing the result of findElement():
const arr = [7, 8, 6];

394 37 Destructuring

const {value, index} = findElement(arr, x => x % 2 === 0);
assert.equal(value, 8);
assert.equal(index, 1);

As we are working with property keys, the order in which we mention value and index
doesn’t matter:

const {index, value} = findElement(arr, x => x % 2 === 0);

The kicker is that destructuring also serves us well if we are only interested in one of the
two results:

const arr = [7, 8, 6];

const {value} = findElement(arr, x => x % 2 === 0);
assert.equal(value, 8);

const {index} = findElement(arr, x => x % 2 === 0);
assert.equal(index, 1);

All of these conveniences combined make this way of handling multiple return values
quite versatile.

37.7 What happens if a pattern part does not match any-
thing?

What happens if there is no match for part of a pattern? The same thing that happens if
you use non-batch operators: you get undefined.

37.7.1 Object-destructuring and missing properties
If a property in an object pattern has nomatch on the right-hand side, you get undefined:

const {prop: p} = {};
assert.equal(p, undefined);

37.7.2 Array-destructuring and missing elements
If an element in anArray pattern has nomatch on the right-hand side, you get undefined:

const [x] = [];
assert.equal(x, undefined);

37.8 What values can’t be destructured?
37.8.1 You can’t object-destructure undefined and null

Object-destructuring only fails if the value to be destructured is either undefined or null.
That is, it fails whenever accessing a property via the dot operator would fail too.

37.9 (Advanced) 395

assert.throws(
() => { const {prop} = undefined; },
{

name: 'TypeError',
message: "Cannot destructure property `prop` of " +

"'undefined' or 'null'.",
}

);
assert.throws(

() => { const {prop} = null; },
{

name: 'TypeError',
message: "Cannot destructure property `prop` of " +

"'undefined' or 'null'.",
}

);

37.8.2 You can’t Array-destructure non-iterable values
Array-destructuring demands that the destructured value be iterable. Therefore,
you can’t Array-destructure undefined and null. But you can’t Array-destructure
non-iterable objects either:

assert.throws(
() => { const [x] = {}; },
{

name: 'TypeError',
message: '{} is not iterable',

}
);

Quiz: basic
See quiz app.

37.9 (Advanced)
All of the remaining sections are advanced.

37.10 Default values
Normally, if a pattern has no match, the corresponding variable is set to undefined:

const {prop: p} = {};
assert.equal(p, undefined);

If you want a different value to be used, you need to specify a default value (via =):

396 37 Destructuring

const {prop: p = 123} = {}; // (A)
assert.equal(p, 123);

In line A, we specify the default value for p to be 123. That default is used because the
data that we are destructuring has no property named prop.

37.10.1 Default values in Array-destructuring
Here, we have two default values that are assigned to the variables x and y because the
corresponding elements don’t exist in the Array that is destructured.

const [x=1, y=2] = [];

assert.equal(x, 1);
assert.equal(y, 2);

The default value for the first element of the Array pattern is 1; the default value for the
second element is 2.

37.10.2 Default values in object-destructuring
You can also specify default values for object-destructuring:

const {first: f='', last: l=''} = {};
assert.equal(f, '');
assert.equal(l, '');

Neither property key first nor property key last exist in the object that is destructured.
Therefore, the default values are used.

With property value shorthands, this code becomes simpler:

const {first='', last=''} = {};
assert.equal(first, '');
assert.equal(last, '');

37.11 Parameter definitions are similar to destructuring
Considering what we have learned in this chapter, parameter definitions have much in
common with an Array pattern (rest elements, default values, etc.). In fact, the following
two function declarations are equivalent:

function f1(«pattern1», «pattern2») {
// ···

}

function f2(...args) {
const [«pattern1», «pattern2»] = args;
// ···

}

37.12 Nested destructuring 397

37.12 Nested destructuring
Until now, we have only used variables as assignment targets (data sinks) inside destruc-
turing patterns. But you can also use patterns as assignment targets, which enables you
to nest patterns to arbitrary depths:

const arr = [
{ first: 'Jane', last: 'Bond' },
{ first: 'Lars', last: 'Croft' },

];
const [, {first}] = arr;
assert.equal(first, 'Lars');

Inside the Array pattern in line A, there is a nested object pattern at index 1.
Nested patterns can become difficult to understand, so they are best used in moderation.

Quiz: advanced
See quiz app.

398 37 Destructuring

Chapter 38

Synchronous generators
(advanced)

Contents
38.1 What are synchronous generators? 399

38.1.1 Generator functions return iterables and fill them via yield . . 400
38.1.2 yield pauses a generator function 400
38.1.3 Why does yield pause execution? 402
38.1.4 Example: Mapping over iterables 403

38.2 Calling generators from generators (advanced) 403
38.2.1 Calling generators via yield* 403
38.2.2 Example: Iterating over a tree 404

38.3 Background: external iteration vs. internal iteration 405
38.4 Use case for generators: reusing traversals 406

38.4.1 The traversal to reuse . 406
38.4.2 Internal iteration (push) . 406
38.4.3 External iteration (pull) . 407

38.5 Advanced features of generators . 407

38.1 What are synchronous generators?
Synchronous generators are special versions of function definitions and method defini-
tions that always return synchronous iterables:

// Generator function declaration
function* genFunc1() { /*···*/ }

// Generator function expression
const genFunc2 = function* () { /*···*/ };

399

400 38 Synchronous generators (advanced)

// Generator method definition in an object literal
const obj = {

* generatorMethod() {
// ···

}
};

// Generator method definition in a class definition
// (class declaration or class expression)
class MyClass {

* generatorMethod() {
// ···

}
}

Asterisks (*) mark functions and methods as generators:
• Functions: The pseudo-keyword function* is a combination of the keyword func-

tion and an asterisk.
• Methods: The * is a modifier (similar to static and get).

38.1.1 Generator functions return iterables and fill them via yield
If you call a generator function, it returns an iterable (actually, an iterator that is also
iterable). The generator fills that iterable via the yield operator:

function* genFunc1() {
yield 'a';
yield 'b';

}

const iterable = genFunc1();
// Convert the iterable to an Array, to check what’s inside:
assert.deepEqual([...iterable], ['a', 'b']);

// You can also use a for-of loop
for (const x of genFunc1()) {

console.log(x);
}
// Output:
// 'a'
// 'b'

38.1.2 yield pauses a generator function
Using a generator function involves the following steps:

• Function-calling it returns an iterator iter (that is also an iterable).
• Iterating over iter repeatedly invokes iter.next(). Each time, we jump into the
body of the generator function until there is a yield that returns a value.

38.1 What are synchronous generators? 401

Therefore, yield does more than just add values to iterables – it also pauses and exits the
generator function:

• Like return, a yield exits the body of the function and returns a value (via
.next()).

• Unlike return, if you repeat the invocation (of .next()), execution resumes di-
rectly after the yield.

Let’s examine what that means via the following generator function.

let location = 0;
function* genFunc2() {

location = 1; yield 'a';
location = 2; yield 'b';
location = 3;

}

In order to use genFunc2(), we must first create the iterator/iterable iter. genFunc2()
is now paused “before” its body.

const iter = genFunc2();
// genFunc2() is now paused “before” its body:
assert.equal(location, 0);

iter implements the iteration protocol. Therefore, we control the execution of gen-
Func2() via iter.next(). Calling that method resumes the paused genFunc2() and ex-
ecutes it until there is a yield. Then execution pauses and .next() returns the operand
of the yield:

assert.deepEqual(
iter.next(), {value: 'a', done: false});

// genFunc2() is now paused directly after the first `yield`:
assert.equal(location, 1);

Note that the yielded value 'a' is wrapped in an object, which is how iterators always
deliver their values.

We call iter.next() again and execution continues where we previously paused. Once
we encounter the second yield, genFunc2() is paused and .next() returns the yielded
value 'b'.

assert.deepEqual(
iter.next(), {value: 'b', done: false});

// genFunc2() is now paused directly after the second `yield`:
assert.equal(location, 2);

We call iter.next() one more time and execution continues until it leaves the body of
genFunc2():

assert.deepEqual(
iter.next(), {value: undefined, done: true});

// We have reached the end of genFunc2():
assert.equal(location, 3);

402 38 Synchronous generators (advanced)

This time, property .done of the result of .next() is true, which means that the iterator
is finished.

38.1.3 Why does yield pause execution?
What are the benefits of yield pausing execution? Why doesn’t it simply work like the
Array method .push() and fill the iterable with values without pausing?
Due to pausing, generators provide many of the features of coroutines (think processes
that are multitasked cooperatively). For example, when you ask for the next value of an
iterable, that value is computed lazily (on demand). The following two generator func-
tions demonstrate what that means.

/**
* Returns an iterable over lines
*/
function* genLines() {

yield 'A line';
yield 'Another line';
yield 'Last line';

}

/**
* Input: iterable over lines
* Output: iterable over numbered lines
*/
function* numberLines(lineIterable) {

let lineNumber = 1;
for (const line of lineIterable) { // input

yield lineNumber + ': ' + line; // output
lineNumber++;

}
}

Note that the yield in numberLines() appears inside a for-of loop. yield can be used
inside loops, but not inside callbacks (more on that later).
Let’s combine both generators to produce the iterable numberedLines:

const numberedLines = numberLines(genLines());
assert.deepEqual(

numberedLines.next(), {value: '1: A line', done: false});
assert.deepEqual(

numberedLines.next(), {value: '2: Another line', done: false});

The key benefit of using generators here is that everythingworks incrementally: via num-
beredLines.next(), we ask numberLines() for only a single numbered line. In turn, it
asks genLines() for only a single unnumbered line.
This incrementalism continues to work if, for example, genLines() reads its lines from
a large text file: If we ask numberLines() for a numbered line, we get one as soon as
genLines() has read its first line from the text file.

38.2 Calling generators from generators (advanced) 403

Without generators, genLines() would first read all lines and return them. Then num-
berLines() would number all lines and return them. We therefore have to wait much
longer until we get the first numbered line.

Exercise: Turning a normal function into a generator
exercises/sync-generators/fib_seq_test.mjs

38.1.4 Example: Mapping over iterables
The following function mapIter() is similar to the Array method .map(), but it returns
an iterable, not an Array, and produces its results on demand.

function* mapIter(iterable, func) {
let index = 0;
for (const x of iterable) {

yield func(x, index);
index++;

}
}

const iterable = mapIter(['a', 'b'], x => x + x);
assert.deepEqual([...iterable], ['aa', 'bb']);

Exercise: Filtering iterables
exercises/sync-generators/filter_iter_gen_test.mjs

38.2 Calling generators from generators (advanced)
38.2.1 Calling generators via yield*
yield only works directly inside generators – so far we haven’t seen a way of delegating
yielding to another function or method.
Let’s first examine what does notwork: in the following example, we’d like foo() to call
bar(), so that the latter yields two values for the former. Alas, a naive approach fails:

function* bar() {
yield 'a';
yield 'b';

}
function* foo() {

// Nothing happens if we call `bar()`:
bar();

}
assert.deepEqual(

[...foo()], []);

404 38 Synchronous generators (advanced)

Why doesn’t this work? The function call bar() returns an iterable, which we ignore.
What we want is for foo() to yield everything that is yielded by bar(). That’s what the
yield* operator does:

function* bar() {
yield 'a';
yield 'b';

}
function* foo() {

yield* bar();
}
assert.deepEqual(

[...foo()], ['a', 'b']);

In other words, the previous foo() is roughly equivalent to:
function* foo() {

for (const x of bar()) {
yield x;

}
}

Note that yield* works with any iterable:
function* gen() {

yield* [1, 2];
}
assert.deepEqual(

[...gen()], [1, 2]);

38.2.2 Example: Iterating over a tree
yield* lets us make recursive calls in generators, which is useful when iterating over
recursive data structures such as trees. Take, for example, the following data structure
for binary trees.

class BinaryTree {
constructor(value, left=null, right=null) {

this.value = value;
this.left = left;
this.right = right;

}

/** Prefix iteration: parent before children */
* [Symbol.iterator]() {

yield this.value;
if (this.left) {

// Same as yield* this.left[Symbol.iterator]()
yield* this.left;

}
if (this.right) {

38.3 Background: external iteration vs. internal iteration 405

yield* this.right;
}

}
}

Method [Symbol.iterator]() adds support for the iteration protocol, whichmeans that
we can use a for-of loop to iterate over an instance of BinaryTree:

const tree = new BinaryTree('a',
new BinaryTree('b',

new BinaryTree('c'),
new BinaryTree('d')),

new BinaryTree('e'));

for (const x of tree) {
console.log(x);

}
// Output:
// 'a'
// 'b'
// 'c'
// 'd'
// 'e'

Exercise: Iterating over a nested Array
exercises/sync-generators/iter_nested_arrays_test.mjs

38.3 Background: external iteration vs. internal iteration
In preparation for the next section, we need to learn about two different styles of iterating
over the values “inside” an object:

• External iteration (pull): Your code asks the object for the values via an iteration
protocol. For example, the for-of loop is based on JavaScript’s iteration protocol:

for (const x of ['a', 'b']) {
console.log(x);

}
// Output:
// 'a'
// 'b'

• Internal iteration (push): You pass a callback function to amethod of the object and
the method feeds the values to the callback. For example, Arrays have the method
.forEach():

['a', 'b'].forEach((x) => {
console.log(x);

});

406 38 Synchronous generators (advanced)

// Output:
// 'a'
// 'b'

The next section has examples for both styles of iteration.

38.4 Use case for generators: reusing traversals
One important use case for generators is extracting and reusing traversals.

38.4.1 The traversal to reuse
As an example, consider the following function that traverses a tree of files and logs their
paths (it uses the Node.js API for doing so):

function logPaths(dir) {
for (const fileName of fs.readdirSync(dir)) {

const filePath = path.resolve(dir, fileName);
console.log(filePath);
const stats = fs.statSync(filePath);
if (stats.isDirectory()) {

logPaths(filePath); // recursive call
}

}
}

Consider the following directory:

mydir/
a.txt
b.txt
subdir/

c.txt

Let’s log the paths inside mydir/:

logPaths('mydir');

// Output:
// 'mydir/a.txt'
// 'mydir/b.txt'
// 'mydir/subdir'
// 'mydir/subdir/c.txt'

How can we reuse this traversal and do something other than logging the paths?

38.4.2 Internal iteration (push)
Oneway of reusing traversal code is via internal iteration: Each traversed value is passsed
to a callback (line A).

https://nodejs.org/en/docs/

38.5 Advanced features of generators 407

function visitPaths(dir, callback) {
for (const fileName of fs.readdirSync(dir)) {

const filePath = path.resolve(dir, fileName);
callback(filePath); // (A)
const stats = fs.statSync(filePath);
if (stats.isDirectory()) {

visitPaths(filePath, callback);
}

}
}
const paths = [];
visitPaths('mydir', p => paths.push(p));
assert.deepEqual(

paths,
[

'mydir/a.txt',
'mydir/b.txt',
'mydir/subdir',
'mydir/subdir/c.txt',

]);

38.4.3 External iteration (pull)
Another way of reusing traversal code is via external iteration: We can write a generator
that yields all traversed values (line A).

function* iterPaths(dir) {
for (const fileName of fs.readdirSync(dir)) {

const filePath = path.resolve(dir, fileName);
yield filePath; // (A)
const stats = fs.statSync(filePath);
if (stats.isDirectory()) {

yield* iterPaths(filePath);
}

}
}
const paths = [...iterPaths('mydir')];

38.5 Advanced features of generators
The chapter on generators in Exploring ES6 covers two features that are beyond the scope
of this book:

• yield can also receive data, via an argument of .next().
• Generators can also return values (not just yield them). Such values do not be-
come iteration values, but can be retrieved via yield*.

https://exploringjs.com/es6/ch_generators.html

408 38 Synchronous generators (advanced)

Part VIII

Asynchronicity

409

Chapter 39

Asynchronous programming in
JavaScript

Contents
39.1 A roadmap for asynchronous programming in JavaScript 412

39.1.1 Synchronous functions . 412
39.1.2 JavaScript executes tasks sequentially in a single process . . . 412
39.1.3 Callback-based asynchronous functions 412
39.1.4 Promise-based asynchronous functions 413
39.1.5 Async functions . 413
39.1.6 Next steps . 414

39.2 The call stack . 414
39.3 The event loop . 415
39.4 How to avoid blocking the JavaScript process 416

39.4.1 The user interface of the browser can be blocked 416
39.4.2 How can we avoid blocking the browser? 417
39.4.3 Taking breaks . 417
39.4.4 Run-to-completion semantics 418

39.5 Patterns for delivering asynchronous results 418
39.5.1 Delivering asynchronous results via events 419
39.5.2 Delivering asynchronous results via callbacks 421

39.6 Asynchronous code: the downsides 421
39.7 Resources . 422

This chapter explains the foundations of asynchronous programming in JavaScript.

411

412 39 Asynchronous programming in JavaScript

39.1 A roadmap for asynchronous programming in
JavaScript

This section provides a roadmap for the content on asynchronous programming in
JavaScript.

Don’t worry about the details!
Don’t worry if you don’t understand everything yet. This is just a quick peek at
what’s coming up.

39.1.1 Synchronous functions
Normal functions are synchronous: the caller waits until the callee is finished with its
computation. divideSync() in line A is a synchronous function call:

function main() {
try {

const result = divideSync(12, 3); // (A)
assert.equal(result, 4);

} catch (err) {
assert.fail(err);

}
}

39.1.2 JavaScript executes tasks sequentially in a single process
By default, JavaScript tasks are functions that are executed sequentially in a single process.
That looks like this:

while (true) {
const task = taskQueue.dequeue();
task(); // run task

}

This loop is also called the event loop because events, such as clicking a mouse, add tasks
to the queue.
Due to this style of cooperative multitasking, we don’t want a task to block other tasks
from being executed while, for example, it waits for results coming from a server. The
next subsection explores how to handle this case.

39.1.3 Callback-based asynchronous functions
What if divide() needs a server to compute its result? Then the result should be deliv-
ered in a different manner: The caller shouldn’t have to wait (synchronously) until the
result is ready; it should be notified (asynchronously) when it is. One way of delivering
the result asynchronously is by giving divide() a callback function that it uses to notify
the caller.

39.1 A roadmap for asynchronous programming in JavaScript 413

function main() {
divideCallback(12, 3,

(err, result) => {
if (err) {
assert.fail(err);

} else {
assert.equal(result, 4);

}
});

}

When there is an asynchronous function call:
divideCallback(x, y, callback)

Then the following steps happen:
• divideCallback() sends a request to a server.
• Then the current task main() is finished and other tasks can be executed.
• When a response from the server arrives, it is either:

– An error err: Then the following task is added to the queue.
taskQueue.enqueue(() => callback(err));

– A result r: Then the following task is added to the queue.
taskQueue.enqueue(() => callback(null, r));

39.1.4 Promise-based asynchronous functions
Promises are two things:

• A standard pattern that makes working with callbacks easier.
• The mechanism onwhich async functions (the topic of the next subsection) are built.

Invoking a Promise-based function looks as follows.
function main() {

dividePromise(12, 3)
.then(result => assert.equal(result, 4))
.catch(err => assert.fail(err));

}

39.1.5 Async functions
One way of looking at async functions is as better syntax for Promise-based code:

async function main() {
try {

const result = await dividePromise(12, 3); // (A)
assert.equal(result, 4);

} catch (err) {
assert.fail(err);

}
}

414 39 Asynchronous programming in JavaScript

The dividePromise() we are calling in line A is the same Promise-based function as in
the previous section. But we now have synchronous-looking syntax for handling the
call. await can only be used inside a special kind of function, an async function (note the
keyword async in front of the keyword function). await pauses the current async func-
tion and returns from it. Once the awaited result is ready, the execution of the function
continues where it left off.

39.1.6 Next steps
• In this chapter, we’ll see how synchronous function calls work. We’ll also explore
JavaScript’s way of executing code in a single process, via its event loop.

• Asynchronicity via callbacks is also described in this chapter.
• The following chapters cover Promises and async functions.
• This series of chapters on asynchronous programming concludes with the chapter
on asynchronous iteration, which is similar to synchronous iteration, but iterated
values are delivered asynchronously.

39.2 The call stack
Whenever a function calls another function, we need to remember where to return to
after the latter function is finished. That is typically done via a stack – the call stack: the
caller pushes onto it the location to return to, and the callee jumps to that location after
it is done.

This is an example where several calls happen:

1 function h(z) {
2 const error = new Error();
3 console.log(error.stack);
4 }
5 function g(y) {
6 h(y + 1);
7 }
8 function f(x) {
9 g(x + 1);
10 }
11 f(3);
12 // done

Initially, before running this piece of code, the call stack is empty. After the function call
f(3) in line 11, the stack has one entry:

• Line 12 (location in top-level scope)

After the function call g(x + 1) in line 9, the stack has two entries:

• Line 10 (location in f())
• Line 12 (location in top-level scope)

After the function call h(y + 1) in line 6, the stack has three entries:

39.3 The event loop 415

• Line 7 (location in g())
• Line 10 (location in f())
• Line 12 (location in top-level scope)

Logging error in line 3, produces the following output:
Error:

at h (demos/async-js/stack_trace.mjs:2:17)
at g (demos/async-js/stack_trace.mjs:6:3)
at f (demos/async-js/stack_trace.mjs:9:3)
at demos/async-js/stack_trace.mjs:11:1

This is a so-called stack trace of where the Error object was created. Note that it records
where callsweremade, not return locations. Creating the exception in line 2 is yet another
call. That’s why the stack trace includes a location inside h().
After line 3, each of the functions terminates and each time, the top entry is removed from
the call stack. After function f is done, we are back in top-level scope and the stack is
empty. When the code fragment ends then that is like an implicit return. If we consider
the code fragment to be a task that is executed, then returning with an empty call stack
ends the task.

39.3 The event loop
By default, JavaScript runs in a single process – in both web browsers and Node.js. The
so-called event loop sequentially executes tasks (pieces of code) inside that process. The
event loop is depicted in fig. 39.1.

onDoneonClick onClick

Task sources:
• DOM manipulation
• User interaction
• Networking
• History traversal
• …

Event loop ↺

Task queue

Call stack

func1

onTimeout

func2

func3 running

Figure 39.1: Task sources add code to run to the task queue, which is emptied by the event
loop.

Two parties access the task queue:

416 39 Asynchronous programming in JavaScript

• Task sources add tasks to the queue. Some of those sources run concurrently to the
JavaScript process. For example, one task source takes care of user interface events:
if a user clicks somewhere and a click listener was registered, then an invocation
of that listener is added to the task queue.

• The event loop runs continuously inside the JavaScript process. During each loop
iteration, it takes one task out of the queue (if the queue is empty, it waits until it
isn’t) and executes it. That task is finished when the call stack is empty and there
is a return. Control goes back to the event loop, which then retrieves the next task
from the queue and executes it. And so on.

The following JavaScript code is an approximation of the event loop:
while (true) {

const task = taskQueue.dequeue();
task(); // run task

}

39.4 How to avoid blocking the JavaScript process
39.4.1 The user interface of the browser can be blocked
Many of the user interface mechanisms of browsers also run in the JavaScript process (as
tasks). Therefore, long-running JavaScript code can block the user interface. Let’s look
at a web page that demonstrates that. There are two ways in which you can try out that
page:

• You can run it online.
• You can open the following file inside the repository with the exercises: demos/

async-js/blocking.html

The following HTML is the page’s user interface:
Block
<div id="statusMessage"></div>
<button>Click me!</button>

The idea is that you click “Block” and a long-running loop is executed via JavaScript.
During that loop, you can’t click the button because the browser/JavaScript process is
blocked.
A simplified version of the JavaScript code looks like this:

document.getElementById('block')
.addEventListener('click', doBlock); // (A)

function doBlock(event) {
// ···
displayStatus('Blocking...');
// ···
sleep(5000); // (B)
displayStatus('Done');

http://rauschma.github.io/async-examples/blocking.html

39.4 How to avoid blocking the JavaScript process 417

}

function sleep(milliseconds) {
const start = Date.now();
while ((Date.now() - start) < milliseconds);

}
function displayStatus(status) {

document.getElementById('statusMessage')
.textContent = status;

}

These are the key parts of the code:

• Line A: We tell the browser to call doBlock() whenever the HTML element is
clicked whose ID is block.

• doBlock() displays status information and then calls sleep() to block the
JavaScript process for 5000 milliseconds (line B).

• sleep() blocks the JavaScript process by looping until enough time has passed.
• displayStatus() displays status messages inside the <div> whose ID is sta-

tusMessage.

39.4.2 How can we avoid blocking the browser?
There are several ways in which you can prevent a long-running operation from blocking
the browser:

• The operation can deliver its result asynchronously: Some operations, such as down-
loads, can be performed concurrently to the JavaScript process. The JavaScript
code triggering such an operation registers a callback, which is invoked with the
result once the operation is finished. The invocation is handled via the task queue.
This style of delivering a result is called asynchronous because the caller doesn’t
wait until the results are ready. Normal function calls deliver their results syn-
chronously.

• Perform long computations in separate processes: This can be done via so-called
WebWorkers. WebWorkers are heavyweight processes that run concurrently to the
main process. Each one of themhas its own runtime environment (global variables,
etc.). They are completely isolated and must be communicated with via message
passing. Consult MDN web docs for more information.

• Take breaks during long computations. The next subsection explains how.

39.4.3 Taking breaks
The following global function executes its parameter callback after a delay of ms mil-
liseconds (the type signature is simplified – setTimeout() has more features):

function setTimeout(callback: () => void, ms: number): any

The function returns a handle (an ID) that can be used to clear the timeout (cancel the
execution of the callback) via the following global function:

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API

418 39 Asynchronous programming in JavaScript

function clearTimeout(handle?: any): void

setTimeout() is available on both browsers and Node.js. The next subsection shows it
in action.

setTimeout() lets tasks take breaks
Another way of looking at setTimeout() is that the current task takes a break and
continues later via the callback.

39.4.4 Run-to-completion semantics
JavaScript makes a guarantee for tasks:

Each task is always finished (“run to completion”) before the next task is
executed.

As a consequence, tasks don’t have to worry about their data being changed while they
are working on it (concurrent modification). That simplifies programming in JavaScript.

The following example demonstrates this guarantee:

console.log('start');
setTimeout(() => {

console.log('callback');
}, 0);
console.log('end');

// Output:
// 'start'
// 'end'
// 'callback'

setTimeout()puts its parameter into the task queue. The parameter is therefore executed
sometime after the current piece of code (task) is completely finished.

The parameter ms only specifies when the task is put into the queue, not when exactly it
runs. It may even never run – for example, if there is a task before it in the queue that
never terminates. That explains why the previous code logs 'end' before 'callback',
even though the parameter ms is 0.

39.5 Patterns for delivering asynchronous results
In order to avoid blocking themain processwhilewaiting for a long-running operation to
finish, results are often delivered asynchronously in JavaScript. These are three popular
patterns for doing so:

• Events
• Callbacks
• Promises

39.5 Patterns for delivering asynchronous results 419

The first two patterns are explained in the next two subsections. Promises are explained
in the next chapter.

39.5.1 Delivering asynchronous results via events
Events as a pattern work as follows:

• They are used to deliver values asynchronously.
• They do so zero or more times.
• There are three roles in this pattern:

– The event (an object) carries the data to be delivered.
– The event listener is a function that receives events via a parameter.
– The event source sends events and lets you register event listeners.

Multiple variations of this pattern exist in the world of JavaScript. We’ll look at three
examples next.

39.5.1.1 Events: IndexedDB

IndexedDB is a database that is built into web browsers. This is an example of using it:

const openRequest = indexedDB.open('MyDatabase', 1); // (A)

openRequest.onsuccess = (event) => {
const db = event.target.result;
// ···

};

openRequest.onerror = (error) => {
console.error(error);

};

indexedDB has an unusual way of invoking operations:

• Each operation has an associated method for creating request objects. For example,
in line A, the operation is “open”, the method is .open(), and the request object is
openRequest.

• The parameters for the operation are provided via the request object, not via pa-
rameters of the method. For example, the event listeners (functions) are stored in
the properties .onsuccess and .onerror.

• The invocation of the operation is added to the task queue via the method (in line
A). That is, we configure the operation after its invocation has already been added
to the queue. Only run-to-completion semantics saves us from race conditions here
and ensures that the operation runs after the current code fragment is finished.

39.5.1.2 Events: XMLHttpRequest

The XMLHttpRequest API lets us make downloads from within a web browser. This is
how we download the file http://example.com/textfile.txt:

420 39 Asynchronous programming in JavaScript

const xhr = new XMLHttpRequest(); // (A)
xhr.open('GET', 'http://example.com/textfile.txt'); // (B)
xhr.onload = () => { // (C)

if (xhr.status == 200) {
processData(xhr.responseText);

} else {
assert.fail(new Error(xhr.statusText));

}
};
xhr.onerror = () => { // (D)

assert.fail(new Error('Network error'));
};
xhr.send(); // (E)

function processData(str) {
assert.equal(str, 'Content of textfile.txt\n');

}

With this API, we first create a request object (line A), then configure it, then activate it
(line E). The configuration consists of:

• Specifying which HTTP request method to use (line B): GET, POST, PUT, etc.
• Registering a listener (line C) that is notified if something could be downloaded.
Inside the listener, we still need to determine if the download contains what we
requested or informs us of an error. Note that some of the result data is delivered
via the request object xhr. (I’m not a fan of this kind of mixing of input and output
data.)

• Registering a listener (line D) that is notified if there was a network error.

39.5.1.3 Events: DOM

We have already seen DOM events in action in §39.4.1 “The user interface of the browser
can be blocked”. The following code also handles click events:

const element = document.getElementById('my-link'); // (A)
element.addEventListener('click', clickListener); // (B)

function clickListener(event) {
event.preventDefault(); // (C)
console.log(event.shiftKey); // (D)

}

We first ask the browser to retrieve the HTML element whose ID is 'my-link' (line A).
Thenwe add a listener for all click events (line B). In the listener, we first tell the browser
not to perform its default action (line C) – going to the target of the link. Then we log to
the console if the shift key is currently pressed (line D).

39.6 Asynchronous code: the downsides 421

39.5.2 Delivering asynchronous results via callbacks
Callbacks are another pattern for handling asynchronous results. They are only used for
one-off results and have the advantage of being less verbose than events.

As an example, consider a function readFile() that reads a text file and returns its con-
tents asynchronously. This is how you call readFile() if it uses Node.js-style callbacks:

readFile('some-file.txt', {encoding: 'utf8'},
(error, data) => {

if (error) {
assert.fail(error);
return;

}
assert.equal(data, 'The content of some-file.txt\n');

});

There is a single callback that handles both success and failure. If the first parameter
is not null then an error happened. Otherwise, the result can be found in the second
parameter.

Exercises: Callback-based code
The following exercises use tests for asynchronous code, which are different from
tests for synchronous code. Consult §11.3.2 “Asynchronous tests in AVA” for more
information.

• From synchronous to callback-based code: exercises/async-js/read_
file_cb_exrc.mjs

• Implementing a callback-based version of .map(): exercises/async-
js/map_cb_test.mjs

39.6 Asynchronous code: the downsides
In many situations, on either browsers or Node.js, you have no choice, you must use
asynchronous code. In this chapter, we have seen several patterns that such code can
use. All of them have two disadvantages:

• Asynchronous code is more verbose than synchronous code.
• If you call asynchronous code, your code must become asynchronous too. That’s
because you can’t wait synchronously for an asynchronous result. Asynchronous
code has an infectious quality.

The first disadvantage becomes less severe with Promises (covered in the next chapter)
and mostly disappears with async functions (covered in the chapter after next).

Alas, the infectiousness of async code does not go away. But it is mitigated by the fact
that switching between sync and async is easy with async functions.

422 39 Asynchronous programming in JavaScript

39.7 Resources
• “Help, I’m stuck in an event-loop” by Philip Roberts (video).
• “Event loops”, section in HTML5 spec.

https://vimeo.com/96425312
https://www.w3.org/TR/html5/webappapis.html#event-loops

Chapter 40

Promises for asynchronous
programming

Contents
40.1 The basics of using Promises . 424

40.1.1 Using a Promise-based function 424
40.1.2 What is a Promise? . 424
40.1.3 Implementing a Promise-based function 425
40.1.4 States of Promises . 425
40.1.5 Promise.resolve(): create a Promise fulfilled with a given value426
40.1.6 Promise.reject(): create a Promise rejected with a given value 426
40.1.7 Returning and throwing in .then() callbacks 426
40.1.8 .catch() and its callback . 428
40.1.9 Chaining method calls . 428
40.1.10 Advantages of promises . 429

40.2 Examples . 429
40.2.1 Node.js: Reading a file asynchronously 429
40.2.2 Browsers: Promisifying XMLHttpRequest 431
40.2.3 Node.js: util.promisify() 432
40.2.4 Browsers: Fetch API . 433

40.3 Error handling: don’t mix rejections and exceptions 433
40.4 Promise-based functions start synchronously, settle asynchronously 435
40.5 Promise.all(): concurrency and Arrays of Promises 436

40.5.1 Sequential execution vs. concurrent execution 436
40.5.2 Concurrency tip: focus on when operations start 436
40.5.3 Promise.all() is fork-join . 437
40.5.4 Asynchronous .map() via Promise.all() 437

40.6 Tips for chaining Promises . 439
40.6.1 Chaining mistake: losing the tail 439
40.6.2 Chaining mistake: nesting . 439

423

424 40 Promises for asynchronous programming

40.6.3 Chaining mistake: more nesting than necessary 440
40.6.4 Not all nesting is bad . 440
40.6.5 Chaining mistake: creating Promises instead of chaining . . . 441

40.7 Advanced topics . 441

In this chapter, we explore Promises, yet another pattern for delivering asynchronous
results.

Recommended reading
This chapter builds on the previous chapter with background on asynchronous pro-
gramming in JavaScript.

40.1 The basics of using Promises
Promises are a pattern for delivering results asynchronously.

40.1.1 Using a Promise-based function
The following code is an example of using the Promise-based function addAsync()
(whose implementation is shown soon):

addAsync(3, 4)
.then(result => { // success

assert.equal(result, 7);
})
.catch(error => { // failure

assert.fail(error);
});

Promises are similar to the event pattern: There is an object (a Promise), where we register
callbacks:

• Method .then() registers callbacks that handle results.
• Method .catch() registers callbacks that handle errors.

A Promise-based function returns a Promise and sends it a result or an error (if andwhen
it is done). The Promise passes it on to the relevant callbacks.
In contrast to the event pattern, Promises are optimized for one-off results:

• A result (or an error) is cached so that it doesn’t matter if we register a callback
before or after the result (or error) was sent.

• We can chain the Promisemethods .then() and .catch() because they both return
Promises. That helps with sequentially invokingmultiple asynchronous functions.
More on that later.

40.1.2 What is a Promise?
What is a Promise? There are two ways of looking at it:

40.1 The basics of using Promises 425

• On one hand, it is a placeholder or container for the final result that will eventually
be delivered.

• On the other hand, it is an object with which we can register listeners.

40.1.3 Implementing a Promise-based function
This is an implementation of a Promise-based function that adds two numbers x and y:

function addAsync(x, y) {
return new Promise(

(resolve, reject) => { // (A)
if (x === undefined || y === undefined) {
reject(new Error('Must provide two parameters'));

} else {
resolve(x + y);

}
});

}

addAsync() immediately invokes the Promise constructor. The actual implementation
of that function resides in the callback that is passed to that constructor (line A). That
callback is provided with two functions:

• resolve is used for delivering a result (in case of success).
• reject is used for delivering an error (in case of failure).

40.1.4 States of Promises

Pending Fulfilled

Rejected

Settled

Figure 40.1: A Promise can be in either one of three states: pending, fulfilled, or rejected.
If a Promise is in a final (non-pending) state, it is called settled.

Fig. 40.1 depicts the three states a Promise can be in. Promises specialize in one-off results
and protect us against race conditions (registering too early or too late):

• If we register a .then() callback or a .catch() callback too early, it is notified once
a Promise is settled.

• Once a Promise is settled, the settlement value (result or error) is cached. Thus, if
.then() or .catch() are called after the settlement, they receive the cached value.

Additionally, once a Promise is settled, its state and settlement value can’t change any-
more. That helps make code predictable and enforces the one-off nature of Promises.

426 40 Promises for asynchronous programming

Some Promises are never settled
It is possible that a Promise is never settled. For example:

new Promise(() => {})

40.1.5 Promise.resolve(): create a Promise fulfilled with a given
value

Promise.resolve(x) creates a Promise that is fulfilled with the value x:
Promise.resolve(123)

.then(x => {
assert.equal(x, 123);

});

If the parameter is already a Promise, it is returned unchanged:
const abcPromise = Promise.resolve('abc');
assert.equal(

Promise.resolve(abcPromise),
abcPromise);

Therefore, given an arbitrary value x, we can use Promise.resolve(x) to ensure we have
a Promise.
Note that the name is resolve, not fulfill, because .resolve() returns a rejected
Promise if its Parameter is a rejected Promise.

40.1.6 Promise.reject(): create a Promise rejected with a given value
Promise.reject(err) creates a Promise that is rejected with the value err:

const myError = new Error('My error!');
Promise.reject(myError)

.catch(err => {
assert.equal(err, myError);

});

40.1.7 Returning and throwing in .then() callbacks
.then() handles Promise fulfillments. It also returns a fresh Promise. How that Promise
is settled depends onwhat happens inside the callback. Let’s look at three common cases.

40.1.7.1 Returning a non-Promise value
First, the callback can return a non-Promise value (line A). Consequently, the Promise
returned by .then() is fulfilled with that value (as checked in line B):

Promise.resolve('abc')
.then(str => {

return str + str; // (A)

40.1 The basics of using Promises 427

})
.then(str2 => {

assert.equal(str2, 'abcabc'); // (B)
});

40.1.7.2 Returning a Promise
Second, the callback can return a Promise p (line A). Consequently, p “becomes” what
.then() returns. In other words: the Promise that .then() has already returned is effec-
tively replaced by p.

Promise.resolve('abc')
.then(str => {

return Promise.resolve(123); // (A)
})
.then(num => {

assert.equal(num, 123);
});

Why is that useful? We can return the result of a Promise-based operation and process
its fulfillment value via a “flat” (non-nested) .then(). Compare:

// Flat
asyncFunc1()

.then(result1 => {
/*···*/
return asyncFunc2();

})
.then(result2 => {

/*···*/
});

// Nested
asyncFunc1()

.then(result1 => {
/*···*/
asyncFunc2()
.then(result2 => {

/*···*/
});

});

40.1.7.3 Throwing an exception
Third, the callback can throw an exception. Consequently, the Promise returned by
.then() is rejected with that exception. That is, a synchronous error is converted into an
asynchronous error.

const myError = new Error('My error!');
Promise.resolve('abc')

.then(str => {

428 40 Promises for asynchronous programming

throw myError;
})
.catch(err => {

assert.equal(err, myError);
});

40.1.8 .catch() and its callback
The only difference between .then() and .catch() is that the latter is triggered by re-
jections, not fulfillments. However, both methods turn the actions of their callbacks into
Promises in the same manner. For example, in the following code, the value returned by
the .catch() callback in line A becomes a fulfillment value:

const err = new Error();

Promise.reject(err)
.catch(e => {

assert.equal(e, err);
// Something went wrong, use a default value
return 'default value'; // (A)

})
.then(str => {

assert.equal(str, 'default value');
});

40.1.9 Chaining method calls
.then() and .catch() always return Promises. That enables us to create arbitrary long
chains of method calls:

function myAsyncFunc() {
return asyncFunc1() // (A)

.then(result1 => {
// ···
return asyncFunc2(); // a Promise

})
.then(result2 => {

// ···
return result2 || '(Empty)'; // not a Promise

})
.then(result3 => {

// ···
return asyncFunc4(); // a Promise

});
}

Due to chaining, the return in line A returns the result of the last .then().
In a way, .then() is the asynchronous version of the synchronous semicolon:

• .then() executes two asynchronous operations sequentially.

40.2 Examples 429

• The semicolon executes two synchronous operations sequentially.
We can also add .catch() into the mix and let it handle multiple error sources at the
same time:

asyncFunc1()
.then(result1 => {

// ···
return asyncFunction2();

})
.then(result2 => {

// ···
})
.catch(error => {

// Failure: handle errors of asyncFunc1(), asyncFunc2()
// and any (sync) exceptions thrown in previous callbacks

});

40.1.10 Advantages of promises
These are some of the advantages of Promises over plain callbacks when it comes to han-
dling one-off results:

• The type signatures of Promise-based functions andmethods are cleaner: if a func-
tion is callback-based, some parameters are about input, while the one or two call-
backs at the end are about output. With Promises, everything output-related is
handled via the returned value.

• Chaining asynchronous processing steps is more convenient.
• Promises handle both asynchronous errors (via rejections) and synchronous errors:
Inside the callbacks for new Promise(), .then(), and .catch(), exceptions are con-
verted to rejections. In contrast, if we use callbacks for asynchronicity, exceptions
are normally not handled for us; we have to do it ourselves.

• Promises are a single standard that is slowly replacing several, mutually incom-
patible alternatives. For example, in Node.js, many functions are now available
in Promise-based versions. And new asynchronous browser APIs are usually
Promise-based.

One of the biggest advantages of Promises involves not workingwith them directly: they
are the foundation of async functions, a synchronous-looking syntax for performing asyn-
chronous computations. Asynchronous functions are covered in the next chapter.

40.2 Examples
Seeing Promises in action helps with understanding them. Let’s look at examples.

40.2.1 Node.js: Reading a file asynchronously
Consider the following text file person.json with JSON data in it:

430 40 Promises for asynchronous programming

{
"first": "Jane",
"last": "Doe"

}

Let’s look at two versions of code that reads this file and parses it into an object. First, a
callback-based version. Second, a Promise-based version.

40.2.1.1 The callback-based version

The following code reads the contents of this file and converts it to a JavaScript object. It
is based on Node.js-style callbacks:

import * as fs from 'fs';
fs.readFile('person.json',

(error, text) => {
if (error) { // (A)

// Failure
assert.fail(error);

} else {
// Success
try { // (B)
const obj = JSON.parse(text); // (C)
assert.deepEqual(obj, {

first: 'Jane',
last: 'Doe',

});
} catch (e) {
// Invalid JSON
assert.fail(e);

}
}

});

fs is a built-in Node.js module for file system operations. We use the callback-based
function fs.readFile() to read a file whose name is person.json. If we succeed, the
content is delivered via the parameter text as a string. In line C, we convert that string
from the text-based data format JSON into a JavaScript object. JSON is an object with
methods for consuming and producing JSON. It is part of JavaScript’s standard library
and documented later in this book.

Note that there are two error-handling mechanisms: the if in line A takes care of asyn-
chronous errors reported by fs.readFile(), while the try in line B takes care of syn-
chronous errors reported by JSON.parse().

40.2.1.2 The Promise-based version

The following code uses readFileAsync(), a Promise-based version of fs.readFile()
(created via util.promisify(), which is explained later):

40.2 Examples 431

readFileAsync('person.json')
.then(text => { // (A)

// Success
const obj = JSON.parse(text);
assert.deepEqual(obj, {

first: 'Jane',
last: 'Doe',

});
})
.catch(err => { // (B)

// Failure: file I/O error or JSON syntax error
assert.fail(err);

});

Function readFileAsync() returns a Promise. In line A, we specify a success callback via
method .then() of that Promise. The remaining code in then’s callback is synchronous.
.then() returns a Promise, which enables the invocation of the Promise method
.catch() in line B. We use it to specify a failure callback.
Note that .catch() lets us handle both the asynchronous errors of readFileAsync() and
the synchronous errors of JSON.parse() because exceptions inside a .then() callback
become rejections.

40.2.2 Browsers: Promisifying XMLHttpRequest

We have previously seen the event-based XMLHttpRequest API for downloading data in
web browsers. The following function promisifies that API:

function httpGet(url) {
return new Promise(

(resolve, reject) => {
const xhr = new XMLHttpRequest();
xhr.onload = () => {
if (xhr.status === 200) {

resolve(xhr.responseText); // (A)
} else {

// Something went wrong (404, etc.)
reject(new Error(xhr.statusText)); // (B)

}
}
xhr.onerror = () => {
reject(new Error('Network error')); // (C)

};
xhr.open('GET', url);
xhr.send();

});
}

Note how the results and errors of XMLHttpRequest are handled via resolve() and re-
ject():

432 40 Promises for asynchronous programming

• A successful outcome leads to the returned Promise being fullfilled with it (line A).
• An error leads to the Promise being rejected (lines B and C).

This is how to use httpGet():

httpGet('http://example.com/textfile.txt')
.then(content => {

assert.equal(content, 'Content of textfile.txt\n');
})
.catch(error => {

assert.fail(error);
});

Exercise: Timing out a Promise
exercises/promises/promise_timeout_test.mjs

40.2.3 Node.js: util.promisify()
util.promisify() is a utility function that converts a callback-based function f into a
Promise-based one. That is, we are going from this type signature:

f(arg_1, ···, arg_n, (err: Error, result: T) => void) : void

To this type signature:

f(arg_1, ···, arg_n) : Promise<T>

The following code promisifies the callback-based fs.readFile() (line A) and uses it:

import * as fs from 'fs';
import {promisify} from 'util';

const readFileAsync = promisify(fs.readFile); // (A)

readFileAsync('some-file.txt', {encoding: 'utf8'})
.then(text => {

assert.equal(text, 'The content of some-file.txt\n');
})
.catch(err => {

assert.fail(err);
});

Exercises: util.promisify()
• Using util.promisify(): exercises/promises/read_file_async_exrc.

mjs
• Implementing util.promisify() yourself: exercises/promises/my_

promisify_test.mjs

40.3 Error handling: don’t mix rejections and exceptions 433

40.2.4 Browsers: Fetch API
All modern browsers support Fetch, a new Promise-based API for downloading data.
Think of it as a Promise-based version of XMLHttpRequest. The following is an excerpt of
the API:

interface Body {
text() : Promise<string>;
···

}
interface Response extends Body {

···
}
declare function fetch(str) : Promise<Response>;

That means we can use fetch() as follows:
fetch('http://example.com/textfile.txt')

.then(response => response.text())

.then(text => {
assert.equal(text, 'Content of textfile.txt\n');

});

Exercise: Using the fetch API
exercises/promises/fetch_json_test.mjs

40.3 Error handling: don’t mix rejections and exceptions
Rule for implementing functions and methods:

Don’t mix (asynchronous) rejections and (synchronous) exceptions.
This makes our synchronous and asynchronous code more predictable and simpler be-
cause we can always focus on a single error-handling mechanism.
For Promise-based functions and methods, the rule means that they should never throw
exceptions. Alas, it is easy to accidentally get this wrong – for example:

// Don’t do this
function asyncFunc() {

doSomethingSync(); // (A)
return doSomethingAsync()

.then(result => {
// ···

});
}

The problem is that if an exception is thrown in line A, then asyncFunc() will throw an
exception. Callers of that function only expect rejections and are not prepared for an
exception. There are three ways in which we can fix this issue.

https://fetch.spec.whatwg.org/#fetch-api

434 40 Promises for asynchronous programming

We can wrap the whole body of the function in a try-catch statement and return a re-
jected Promise if an exception is thrown:

// Solution 1
function asyncFunc() {

try {
doSomethingSync();
return doSomethingAsync()

.then(result => {
// ···

});
} catch (err) {

return Promise.reject(err);
}

}

Given that .then() converts exceptions to rejections, we can execute doSomethingSync()
inside a .then() callback. To do so, we start a Promise chain via Promise.resolve(). We
ignore the fulfillment value undefined of that initial Promise.

// Solution 2
function asyncFunc() {

return Promise.resolve()
.then(() => {

doSomethingSync();
return doSomethingAsync();

})
.then(result => {

// ···
});

}

Lastly, new Promise() also converts exceptions to rejections. Using this constructor is
therefore similar to the previous solution:

// Solution 3
function asyncFunc() {

return new Promise((resolve, reject) => {
doSomethingSync();
resolve(doSomethingAsync());

})
.then(result => {

// ···
});

}

40.4 Promise-based functions start synchronously, settle asynchronously 435

40.4 Promise-based functions start synchronously, settle
asynchronously

Most Promise-based functions are executed as follows:
• Their execution starts right away, synchronously (in the current task).
• But the Promise they return is guaranteed to be settled asynchronously (in a later
task) – if ever.

The following code demonstrates that:
function asyncFunc() {

console.log('asyncFunc');
return new Promise(

(resolve, _reject) => {
console.log('new Promise()');
resolve();

});
}
console.log('START');
asyncFunc()

.then(() => {
console.log('.then()'); // (A)

});
console.log('END');

// Output:
// 'START'
// 'asyncFunc'
// 'new Promise()'
// ' END '
// '.then()'

We can see that the callback of new Promise() is executed before the end of the code,
while the result is delivered later (line A).
Benefits of this approach:

• Starting synchronously helps avoid race conditions because we can rely on the
order in which Promise-based functions begin. There is an example in the next
chapter, where text is written to a file and race conditions are avoided.

• Chaining Promises won’t starve other tasks of processing time because before a
Promise is settled, there will always be a break, during which the event loop can
run.

• Promise-based functions always return results asynchronously; we can be sure that
there is never a synchronous return. This kind of predictability makes code easier
to work with.

436 40 Promises for asynchronous programming

More information on this approach
“Designing APIs for Asynchrony” by Isaac Z. Schlueter

40.5 Promise.all(): concurrency and Arrays of Promises
40.5.1 Sequential execution vs. concurrent execution
Consider the following code:

const asyncFunc1 = () => Promise.resolve('one');
const asyncFunc2 = () => Promise.resolve('two');

asyncFunc1()
.then(result1 => {

assert.equal(result1, 'one');
return asyncFunc2();

})
.then(result2 => {

assert.equal(result2, 'two');
});

Using .then() in this manner executes Promise-based functions sequentially: only after
the result of asyncFunc1() is settled will asyncFunc2() be executed.
The static method Promise.all() helps execute Promise-based functions more concur-
rently:

Promise.all([asyncFunc1(), asyncFunc2()])
.then(arr => {

assert.deepEqual(arr, ['one', 'two']);
});

Its type signature is:
Promise.all<T>(promises: Iterable<Promise<T>>): Promise<T[]>

The parameter promises is an iterable of Promises. The result is a single Promise that is
settled as follows:

• If and when all input Promises are fulfilled, the output Promise is fulfilled with an
Array of the fulfillment values.

• As soon as at least one input Promise is rejected, the output Promise is rejected
with the rejection value of that input Promise.

In other words: We go from an iterable of Promises to a Promise for an Array.

40.5.2 Concurrency tip: focus on when operations start
Tip for determining how “concurrent” asynchronous code is: Focus on when asyn-
chronous operations start, not on how their Promises are handled.

http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony

40.5 Promise.all(): concurrency and Arrays of Promises 437

For example, each of the following functions executes asyncFunc1() and asyncFunc2()
concurrently because they are started at nearly the same time.

function concurrentAll() {
return Promise.all([asyncFunc1(), asyncFunc2()]);

}

function concurrentThen() {
const p1 = asyncFunc1();
const p2 = asyncFunc2();
return p1.then(r1 => p2.then(r2 => [r1, r2]));

}

On the other hand, both of the following functions execute asyncFunc1() and async-
Func2() sequentially: asyncFunc2() is only invoked after the Promise of asyncFunc1()
is fulfilled.

function sequentialThen() {
return asyncFunc1()

.then(r1 => asyncFunc2()
.then(r2 => [r1, r2]));

}

function sequentialAll() {
const p1 = asyncFunc1();
const p2 = p1.then(() => asyncFunc2());
return Promise.all([p1, p2]);

}

40.5.3 Promise.all() is fork-join
Promise.all() is loosely related to the concurrency pattern “fork join” – for example:

Promise.all([
// Fork async computations
httpGet('http://example.com/file1.txt'),
httpGet('http://example.com/file2.txt'),

])
// Join async computations
.then(([text1, text2]) => {

assert.equal(text1, 'Content of file1.txt\n');
assert.equal(text2, 'Content of file2.txt\n');

});

httpGet() is the promisified version of XMLHttpRequest that we implemented earlier.

40.5.4 Asynchronous .map() via Promise.all()
Array transformation methods such as .map(), .filter(), etc., are made for syn-
chronous computations – for example:

438 40 Promises for asynchronous programming

function timesTwoSync(x) {
return 2 * x;

}
const arr = [1, 2, 3];
const result = arr.map(timesTwoSync);
assert.deepEqual(result, [2, 4, 6]);

What happens if the callback of .map() is a Promise-based function (a function that
maps normal values to Promises)? Then the result of .map() is an Array of Promises.
Alas, that is not data that normal code can work with. Thankfully, we can fix that via
Promise.all(): It converts an Array of Promises into a Promise that is fulfilled with an
Array of normal values.

function timesTwoAsync(x) {
return new Promise(resolve => resolve(x * 2));

}
const arr = [1, 2, 3];
const promiseArr = arr.map(timesTwoAsync);
Promise.all(promiseArr)

.then(result => {
assert.deepEqual(result, [2, 4, 6]);

});

40.5.4.1 A more realistic example
The following code is a more realistic example: in the section on fork-join, there was an
example where we downloaded two resources identified by two fixed URLs. Let’s turn
that code fragment into a function that accepts an Array of URLs and downloads the
corresponding resources:

function downloadTexts(urls) {
const promisedTexts = urls.map(httpGet);
return Promise.all(promisedTexts);

}

downloadTexts([
'http://example.com/file1.txt',
'http://example.com/file2.txt',

])
.then(texts => {

assert.deepEqual(
texts, [
'Content of file1.txt\n',
'Content of file2.txt\n',

]);
});

Exercise: Promise.all() and listing files

40.6 Tips for chaining Promises 439

exercises/promises/list_files_async_test.mjs

40.6 Tips for chaining Promises
This section gives tips for chaining Promises.

40.6.1 Chaining mistake: losing the tail
Problem:

// Don’t do this
function foo() {

const promise = asyncFunc();
promise.then(result => {

// ···
});

return promise;
}

Computation starts with the Promise returned by asyncFunc(). But afterward, compu-
tation continues and another Promise is created via .then(). foo() returns the former
Promise, but should return the latter. This is how to fix it:

function foo() {
const promise = asyncFunc();
return promise.then(result => {

// ···
});

}

40.6.2 Chaining mistake: nesting
Problem:

// Don’t do this
asyncFunc1()

.then(result1 => {
return asyncFunc2()
.then(result2 => { // (A)

// ···
});

});

The .then() in line A is nested. A flat structure would be better:
asyncFunc1()

.then(result1 => {
return asyncFunc2();

})
.then(result2 => {

440 40 Promises for asynchronous programming

// ···
});

40.6.3 Chaining mistake: more nesting than necessary
This is another example of avoidable nesting:

// Don’t do this
asyncFunc1()

.then(result1 => {
if (result1 < 0) {

return asyncFuncA()
.then(resultA => 'Result: ' + resultA);

} else {
return asyncFuncB()
.then(resultB => 'Result: ' + resultB);

}
});

We can once again get a flat structure:

asyncFunc1()
.then(result1 => {

return result1 < 0 ? asyncFuncA() : asyncFuncB();
})
.then(resultAB => {

return 'Result: ' + resultAB;
});

40.6.4 Not all nesting is bad
In the following code, we actually benefit from nesting:

db.open()
.then(connection => { // (A)

return connection.select({ name: 'Jane' })
.then(result => { // (B)
// Process result
// Use `connection` to make more queries

})
// ···
.finally(() => {
connection.close(); // (C)

});
})

We are receiving an asynchronous result in line A. In line B, we are nesting so that we
have access to variable connection inside the callback and in line C.

40.7 Advanced topics 441

40.6.5 Chaining mistake: creating Promises instead of chaining
Problem:

// Don’t do this
class Model {

insertInto(db) {
return new Promise((resolve, reject) => { // (A)

db.insert(this.fields)
.then(resultCode => {

this.notifyObservers({event: 'created', model: this});
resolve(resultCode);

}).catch(err => {
reject(err);

})
});

}
// ···

}

In line A, we are creating a Promise to deliver the result of db.insert(). That is unnec-
essarily verbose and can be simplified:

class Model {
insertInto(db) {

return db.insert(this.fields)
.then(resultCode => {
this.notifyObservers({event: 'created', model: this});
return resultCode;

});
}
// ···

}

The key idea is that we don’t need to create a Promise; we can return the result of the
.then() call. An additional benefit is that we don’t need to catch and re-reject the failure
of db.insert(). We simply pass its rejection on to the caller of .insertInto().

40.7 Advanced topics
• In addition to Promise.all(), there is also Promise.race(), which is not used of-
ten and described in Exploring ES6.

• Exploring ES6 has a section that shows a very simple implementation of Promises.
That may be helpful if you want a deeper understanding of how Promises work.

https://exploringjs.com/es6/ch_promises.html#_timing-out-via-promiserace
https://exploringjs.com/es6/ch_promises.html#sec_demo-promise

442 40 Promises for asynchronous programming

Chapter 41

Async functions

Contents
41.1 Async functions: the basics . 443

41.1.1 Async constructs . 445
41.2 Returning from async functions . 445

41.2.1 Async functions always return Promises 445
41.2.2 Returned Promises are not wrapped 446
41.2.3 Executing async functions: synchronous start, asynchronous

settlement (advanced) . 446
41.3 await: working with Promises . 447

41.3.1 await and fulfilled Promises 448
41.3.2 await and rejected Promises 448
41.3.3 await is shallow (we can’t use it in callbacks) 448

41.4 (Advanced) . 449
41.5 Immediately invoked async arrow functions 449
41.6 Concurrency and await . 450

41.6.1 await: running asynchronous functions sequentially 450
41.6.2 await: running asynchronous functions concurrently 450

41.7 Tips for using async functions . 451
41.7.1 We don’t need await if we “fire and forget” 451
41.7.2 It can make sense to await and ignore the result 452

Roughly, async functions provide better syntax for code that uses Promises. In order to
use async functions, we should therefore understand Promises. They are explained in
the previous chapter.

41.1 Async functions: the basics
Consider the following async function:

443

444 41 Async functions

async function fetchJsonAsync(url) {
try {

const request = await fetch(url); // async
const text = await request.text(); // async
return JSON.parse(text); // sync

}
catch (error) {

assert.fail(error);
}

}

The previous, rather synchronous-looking code is equivalent to the following code that
uses Promises directly:

function fetchJsonViaPromises(url) {
return fetch(url) // async
.then(request => request.text()) // async
.then(text => JSON.parse(text)) // sync
.catch(error => {

assert.fail(error);
});

}

A few observations about the async function fetchJsonAsync():

• Async functions are marked with the keyword async.

• Inside the body of an async function, we write Promise-based code as if it were
synchronous. We only need to apply the await operator whenever a value is a
Promise. That operator pauses the async function and resumes it once the Promise
is settled:

– If the Promise is fulfilled, await returns the fulfillment value.
– If the Promise is rejected, await throws the rejection value.

• The result of an async function is always a Promise:

– Any value that is returned (explicitly or implicitly) is used to fulfill the
Promise.

– Any exception that is thrown is used to reject the Promise.

Both fetchJsonAsync() and fetchJsonViaPromises() are called in exactly the sameway,
like this:

fetchJsonAsync('http://example.com/person.json')
.then(obj => {

assert.deepEqual(obj, {
first: 'Jane',
last: 'Doe',

});
});

41.2 Returning from async functions 445

Async functions are as Promise-based as functions that use Promises di-
rectly
From the outside, it is virtually impossible to tell the difference between an async
function and a function that returns a Promise.

41.1.1 Async constructs
JavaScript has the following async versions of synchronous callable entities. Their roles
are always either real function or method.

// Async function declaration
async function func1() {}

// Async function expression
const func2 = async function () {};

// Async arrow function
const func3 = async () => {};

// Async method definition in an object literal
const obj = { async m() {} };

// Async method definition in a class definition
class MyClass { async m() {} }

Asynchronous functions vs. async functions
The difference between the terms asynchronous function and async function is subtle,
but important:

• An asynchronous function is any function that delivers its result asyn-
chronously – for example, a callback-based function or a Promise-based
function.

• An async function is defined via special syntax, involving the keywords async
and await. It is also called async/await due to these two keywords. Async
functions are based on Promises and therefore also asynchronous functions
(which is somewhat confusing).

41.2 Returning from async functions
41.2.1 Async functions always return Promises
Each async function always returns a Promise.
Inside the async function, we fulfill the result Promise via return (line A):

async function asyncFunc() {

446 41 Async functions

return 123; // (A)
}

asyncFunc()
.then(result => {

assert.equal(result, 123);
});

As usual, if we don’t explicitly return anything, undefined is returned for us:
async function asyncFunc() {
}

asyncFunc()
.then(result => {

assert.equal(result, undefined);
});

We reject the result Promise via throw (line A):
async function asyncFunc() {

throw new Error('Problem!'); // (A)
}

asyncFunc()
.catch(err => {

assert.deepEqual(err, new Error('Problem!'));
});

41.2.2 Returned Promises are not wrapped
If we return a Promise p from an async function, then p becomes the result of the function
(or rather, the result “locks in” on p and behaves exactly like it). That is, the Promise is
not wrapped in yet another Promise.

async function asyncFunc() {
return Promise.resolve('abc');

}

asyncFunc()
.then(result => assert.equal(result, 'abc'));

Recall that any Promise q is treated similarly in the following situations:
• resolve(q) inside new Promise((resolve, reject) => { ··· })
• return q inside .then(result => { ··· })
• return q inside .catch(err => { ··· })

41.2.3 Executing async functions: synchronous start, asynchronous
settlement (advanced)

Async functions are executed as follows:

41.3 await: working with Promises 447

• The Promise p for the result is created when the async function is started.
• Then the body is executed. There are two ways in which execution can leave the
body:

– Execution can leave permanentlywhile settling p:
* A return fulfills p.
* A throw rejects p.

– Execution can also leave temporarily when awaiting the settlement of an-
other Promise q via await. The async function is paused and execution leaves
it. It is resumed once q is settled.

• Promise p is returned after execution has left the body for the first time (perma-
nently or temporarily).

Note that the notification of the settlement of the result p happens asynchronously, as is
always the case with Promises.

The following code demonstrates that an async function is started synchronously (lineA),
then the current task finishes (line C), then the result Promise is settled – asynchronously
(line B).

async function asyncFunc() {
console.log('asyncFunc() starts'); // (A)
return 'abc';

}
asyncFunc().
then(x => { // (B)

console.log(`Resolved: ${x}`);
});
console.log('Task ends'); // (C)

// Output:
// 'asyncFunc() starts'
// 'Task ends'
// 'Resolved: abc'

41.3 await: working with Promises
The await operator can only be used inside async functions and async generators (which
are explained in §42.2 “Asynchronous generators”). Its operand is usually a Promise and
leads to the following steps being performed:

• The current async function is paused and returned from. This step is similar to
how yieldworks in sync generators.

• Eventually, the current task is finished and processing of the task queue continues.
• When and if the Promise is settled, the async function is resumed in a new task:

– If the Promise is fulfilled, await returns the fulfillment value.
– If the Promise is rejected, await throws the rejection value.

Read on to find out more about how await handles Promises in various states.

448 41 Async functions

41.3.1 await and fulfilled Promises
If its operand ends up being a fulfilled Promise, await returns its fulfillment value:

assert.equal(await Promise.resolve('yes!'), 'yes!');

Non-Promise values are allowed, too, and simply passed on (synchronously, without
pausing the async function):

assert.equal(await 'yes!', 'yes!');

41.3.2 await and rejected Promises
If its operand is a rejected Promise, then await throws the rejection value:

try {
await Promise.reject(new Error());
assert.fail(); // we never get here

} catch (e) {
assert.equal(e instanceof Error, true);

}

Instances of Error (including instances of its subclasses) are treated specially and also
thrown:

try {
await new Error();
assert.fail(); // we never get here

} catch (e) {
assert.equal(e instanceof Error, true);

}

Exercise: Fetch API via async functions
exercises/async-functions/fetch_json2_test.mjs

41.3.3 await is shallow (we can’t use it in callbacks)
If we are inside an async function and want to pause it via await, we must do so directly
within that function; we can’t use it inside a nested function, such as a callback. That is,
pausing is shallow.
For example, the following code can’t be executed:

async function downloadContent(urls) {
return urls.map((url) => {

return await httpGet(url); // SyntaxError!
});

}

The reason is that normal arrow functions don’t allow await inside their bodies.
OK, let’s try an async arrow function then:

41.4 (Advanced) 449

async function downloadContent(urls) {
return urls.map(async (url) => {

return await httpGet(url);
});

}

Alas, this doesn’t work either: Now .map() (and therefore downloadContent()) returns
an Array with Promises, not an Array with (unwrapped) values.
One possible solution is to use Promise.all() to unwrap all Promises:

async function downloadContent(urls) {
const promiseArray = urls.map(async (url) => {

return await httpGet(url); // (A)
});
return await Promise.all(promiseArray);

}

Can this code be improved? Yes it can: in line A, we are unwrapping a Promise via await,
only to re-wrap it immediately via return. If we omit await, we don’t even need an async
arrow function:

async function downloadContent(urls) {
const promiseArray = urls.map(

url => httpGet(url));
return await Promise.all(promiseArray); // (B)

}

For the same reason, we can also omit await in line B.

Exercise: Mapping and filtering asynchronously
exercises/async-functions/map_async_test.mjs

41.4 (Advanced)
All remaining sections are advanced.

41.5 Immediately invoked async arrow functions
If we need an await outside an async function (e.g., at the top level of a module), then
we can immediately invoke an async arrow function:

(async () => { // start
const promise = Promise.resolve('abc');
const value = await promise;
assert.equal(value, 'abc');

})(); // end

The result of an immediately invoked async arrow function is a Promise:

450 41 Async functions

const promise = (async () => 123)();
promise.then(x => assert.equal(x, 123));

41.6 Concurrency and await

In the next two subsections, we’ll use the helper function paused():
/**
* Resolves after `ms` milliseconds
*/
function delay(ms) {

return new Promise((resolve, _reject) => {
setTimeout(resolve, ms);

});
}
async function paused(id) {

console.log('START ' + id);
await delay(10); // pause
console.log('END ' + id);
return id;

}

41.6.1 await: running asynchronous functions sequentially
If we prefix the invocations of multiple asynchronous functions with await, then those
functions are executed sequentially:

async function sequentialAwait() {
const result1 = await paused('first');
assert.equal(result1, 'first');

const result2 = await paused('second');
assert.equal(result2, 'second');

}

// Output:
// 'START first'
// ' END first'
// 'START second'
// ' END second'

That is, paused('second') is only started after paused('first') is completely finished.

41.6.2 await: running asynchronous functions concurrently
If we want to run multiple functions concurrently, we can use the tool method
Promise.all():

async function concurrentPromiseAll() {
const result = await Promise.all([

41.7 Tips for using async functions 451

paused('first'), paused('second')
]);
assert.deepEqual(result, ['first', 'second']);

}

// Output:
// 'START first'
// 'START second'
// ' END first'
// ' END second'

Here, both asynchronous functions are started at the same time. Once both are settled,
await gives us either an Array of fulfillment values or – if at least one Promise is rejected
– an exception.
Recall from §40.5.2 “Concurrency tip: focus on when operations start” that what counts
is when we start a Promise-based computation; not how we process its result. Therefore,
the following code is as “concurrent” as the previous one:

async function concurrentAwait() {
const resultPromise1 = paused('first');
const resultPromise2 = paused('second');

assert.equal(await resultPromise1, 'first');
assert.equal(await resultPromise2, 'second');

}
// Output:
// 'START first'
// 'START second'
// ' END first'
// ' END second'

41.7 Tips for using async functions
41.7.1 We don’t need await if we “fire and forget”
await is not required when working with a Promise-based function; we only need it if
we want to pause and wait until the returned Promise is settled. If we only want to start
an asynchronous operation, then we don’t need it:

async function asyncFunc() {
const writer = openFile('someFile.txt');
writer.write('hello'); // don’t wait
writer.write('world'); // don’t wait
await writer.close(); // wait for file to close

}

In this code, we don’t await .write() because we don’t care when it is finished. We do,
however, want to wait until .close() is done.
Note: Each invocation of .write() starts synchronously. That prevents race conditions.

452 41 Async functions

41.7.2 It can make sense to await and ignore the result
It can occasionally make sense to use await, even if we ignore its result – for example:

await longRunningAsyncOperation();
console.log('Done!');

Here, we are using await to join a long-running asynchronous operation. That ensures
that the logging really happens after that operation is done.

Chapter 42

Asynchronous iteration

Contents
42.1 Basic asynchronous iteration . 453

42.1.1 Protocol: async iteration . 453
42.1.2 Using async iteration directly 454
42.1.3 Using async iteration via for-await-of 456

42.2 Asynchronous generators . 456
42.2.1 Example: creating an async iterable via an async generator . . 457
42.2.2 Example: converting a sync iterable to an async iterable 458
42.2.3 Example: converting an async iterable to an Array 458
42.2.4 Example: transforming an async iterable 459
42.2.5 Example: mapping over asynchronous iterables 459

42.3 Async iteration over Node.js streams 460
42.3.1 Node.js streams: async via callbacks (push) 460
42.3.2 Node.js streams: async via async iteration (pull) 461
42.3.3 Example: from chunks to lines 461

Required knowledge
For this chapter, you should be familiar with:

• Promises
• Async functions

42.1 Basic asynchronous iteration
42.1.1 Protocol: async iteration
To understand how asynchronous iterationworks, let’s first revisit synchronous iteration.
It comprises the following interfaces:

453

454 42 Asynchronous iteration

interface Iterable<T> {
[Symbol.iterator]() : Iterator<T>;

}
interface Iterator<T> {

next() : IteratorResult<T>;
}
interface IteratorResult<T> {

value: T;
done: boolean;

}

• An Iterable is a data structure whose contents can be accessed via iteration. It is
a factory for iterators.

• An Iterator is a factory for iteration results that we retrieve by calling the method
.next().

• Each IterationResult contains the iterated .value and a boolean .done that is
true after the last element and false before.

For the protocol for asynchronous iteration, we onlywant to change one thing: the values
produced by .next() should be delivered asynchronously. There are two conceivable
options:

• The .value could contain a Promise<T>.
• .next() could return Promise<IteratorResult<T>>.

In other words, the question is whether to wrap just values or whole iterator results in
Promises.

It has to be the latter because when .next() returns a result, it starts an asynchronous
computation. Whether or not that computation produces a value or signals the end of the
iteration can only be determined after it is finished. Therefore, both .done and .value
need to be wrapped in a Promise.

The interfaces for async iteration look as follows.

interface AsyncIterable<T> {
[Symbol.asyncIterator]() : AsyncIterator<T>;

}
interface AsyncIterator<T> {

next() : Promise<IteratorResult<T>>; // (A)
}
interface IteratorResult<T> {

value: T;
done: boolean;

}

The only difference to the synchronous interfaces is the return type of .next() (line A).

42.1.2 Using async iteration directly
The following code uses the asynchronous iteration protocol directly:

42.1 Basic asynchronous iteration 455

const asyncIterable = syncToAsyncIterable(['a', 'b']); // (A)
const asyncIterator = asyncIterable[Symbol.asyncIterator]();

// Call .next() until .done is true:
asyncIterator.next() // (B)
.then(iteratorResult => {

assert.deepEqual(
iteratorResult,
{ value: 'a', done: false });

return asyncIterator.next(); // (C)
})
.then(iteratorResult => {

assert.deepEqual(
iteratorResult,
{ value: 'b', done: false });

return asyncIterator.next(); // (D)
})
.then(iteratorResult => {

assert.deepEqual(
iteratorResult,
{ value: undefined, done: true });

})
;

In line A, we create an asynchronous iterable over the value 'a' and 'b'. We’ll see an
implementation of syncToAsyncIterable() later.

We call .next() in line B, line C and line D. Each time, we use .next() to unwrap the
Promise and assert.deepEqual() to check the unwrapped value.

We can simplify this code if we use an async function. Now we unwrap Promises via
await and the code looks almost like we are doing synchronous iteration:

async function f() {
const asyncIterable = syncToAsyncIterable(['a', 'b']);
const asyncIterator = asyncIterable[Symbol.asyncIterator]();

// Call .next() until .done is true:
assert.deepEqual(

await asyncIterator.next(),
{ value: 'a', done: false });

assert.deepEqual(
await asyncIterator.next(),
{ value: 'b', done: false });

assert.deepEqual(
await asyncIterator.next(),
{ value: undefined, done: true });

}

456 42 Asynchronous iteration

42.1.3 Using async iteration via for-await-of
The asynchronous iteration protocol is notmeant to be used directly. One of the language
constructs that supports it is the for-await-of loop, which is an asynchronous version
of the for-of loop. It can be used in async functions and async generators (which are
introduced later in this chapter). This is an example of for-await-of in use:

for await (const x of syncToAsyncIterable(['a', 'b'])) {
console.log(x);

}
// Output:
// 'a'
// 'b'

for-await-of is relatively flexible. In addition to asynchronous iterables, it also supports
synchronous iterables:

for await (const x of ['a', 'b']) {
console.log(x);

}
// Output:
// 'a'
// 'b'

And it supports synchronous iterables over values that are wrapped in Promises:
const arr = [Promise.resolve('a'), Promise.resolve('b')];
for await (const x of arr) {

console.log(x);
}
// Output:
// 'a'
// 'b'

Exercise: Convert an async iterable to an Array
Warning: We’ll soon see the solution for this exercise in this chapter.

• exercises/async-iteration/async_iterable_to_array_test.mjs

42.2 Asynchronous generators
An asynchronous generator is two things at the same time:

• An async function (input): We can use await and for-await-of to retrieve data.
• A generator that returns an asynchronous iterable (output): We can use yield and

yield* to produce data.

Asynchronous generators are very similar to synchronous generators

42.2 Asynchronous generators 457

Due to async generators and sync generators being so similar, I don’t explain how
exactly yield and yield* work. Please consult §38 “Synchronous generators” if
you have doubts.

Therefore, an asynchronous generator has:

• Input that can be:
– synchronous (single values, sync iterables) or
– asynchronous (Promises, async iterables).

• Output that is an asynchronous iterable.

This looks as follows:

async function* asyncGen() {
// Input: Promises, async iterables
const x = await somePromise;
for await (const y of someAsyncIterable) {

// ···
}

// Output
yield someValue;
yield* otherAsyncGen();

}

42.2.1 Example: creating an async iterable via an async generator
Let’s look at an example. The following code creates an async iterable with three num-
bers:

async function* yield123() {
for (let i=1; i<=3; i++) {

yield i;
}

}

Does the result of yield123() conform to the async iteration protocol?

(async () => {
const asyncIterable = yield123();
const asyncIterator = asyncIterable[Symbol.asyncIterator]();
assert.deepEqual(

await asyncIterator.next(),
{ value: 1, done: false });

assert.deepEqual(
await asyncIterator.next(),
{ value: 2, done: false });

assert.deepEqual(
await asyncIterator.next(),
{ value: 3, done: false });

458 42 Asynchronous iteration

assert.deepEqual(
await asyncIterator.next(),
{ value: undefined, done: true });

})();

We wrapped the code in an immediately invoked async arrow function.

42.2.2 Example: converting a sync iterable to an async iterable
The following asynchronous generator converts a synchronous iterable to an asyn-
chronous iterable. It implements the function syncToAsyncIterable() that we have
used previously.

async function* syncToAsyncIterable(syncIterable) {
for (const elem of syncIterable) {

yield elem;
}

}

Note: The input is synchronous in this case (no await is needed).

42.2.3 Example: converting an async iterable to an Array
The following function is a solution to a previous exercise. It converts an async iterable
to an Array (think spreading, but for async iterables instead of sync iterables).

async function asyncIterableToArray(asyncIterable) {
const result = [];
for await (const value of asyncIterable) {

result.push(value);
}
return result;

}

Note that we can’t use an async generator in this case: We get our input via for-await-
of and return an Array wrapped in a Promise. The latter requirement rules out async
generators.
This is a test for asyncIterableToArray():

async function* createAsyncIterable() {
yield 'a';
yield 'b';

}
const asyncIterable = createAsyncIterable();
assert.deepEqual(

await asyncIterableToArray(asyncIterable), // (A)
['a', 'b']

);

Note the await in line A, which is needed to unwrap the Promise returned by asyncIt-
erableToArray(). In order for await to work, this code fragment must be run inside an

42.2 Asynchronous generators 459

async function.

42.2.4 Example: transforming an async iterable
Let’s implement an async generator that produces a new async iterable by transforming
an existing async iterable.

async function* timesTwo(asyncNumbers) {
for await (const x of asyncNumbers) {

yield x * 2;
}

}

To test this function, we use asyncIterableToArray() from the previous section.
async function* createAsyncIterable() {

for (let i=1; i<=3; i++) {
yield i;

}
}
assert.deepEqual(

await asyncIterableToArray(timesTwo(createAsyncIterable())),
[2, 4, 6]

);

Exercise: Async generators
Warning: We’ll soon see the solution for this exercise in this chapter.

• exercises/async-iteration/number_lines_test.mjs

42.2.5 Example: mapping over asynchronous iterables
As a reminder, this is how to map over synchronous iterables:

function* mapSync(iterable, func) {
let index = 0;
for (const x of iterable) {

yield func(x, index);
index++;

}
}
const syncIterable = mapSync(['a', 'b', 'c'], s => s.repeat(3));
assert.deepEqual(

[...syncIterable],
['aaa', 'bbb', 'ccc']);

The asynchronous version looks as follows:
async function* mapAsync(asyncIterable, func) { // (A)

let index = 0;

460 42 Asynchronous iteration

for await (const x of asyncIterable) { // (B)
yield func(x, index);
index++;

}
}

Note how similar the sync implementation and the async implementation are. The only
two differences are the async in line A and the await in line B. That is comparable to
going from a synchronous function to an asynchronous function – we only need to add
the keyword async and the occasional await.

To test mapAsync(), we use the helper function asyncIterableToArray() (shown earlier
in this chapter):

async function* createAsyncIterable() {
yield 'a';
yield 'b';

}
const mapped = mapAsync(

createAsyncIterable(), s => s.repeat(3));
assert.deepEqual(

await asyncIterableToArray(mapped), // (A)
['aaa', 'bbb']);

Once again, we await to unwrap a Promise (line A) and this code fragment must run
inside an async function.

Exercise: filterAsyncIter()
exercises/async-iteration/filter_async_iter_test.mjs

42.3 Async iteration over Node.js streams
42.3.1 Node.js streams: async via callbacks (push)
Traditionally, reading asynchronously from Node.js streams is done via callbacks:

function main(inputFilePath) {
const readStream = fs.createReadStream(inputFilePath,

{ encoding: 'utf8', highWaterMark: 1024 });
readStream.on('data', (chunk) => {

console.log('>>> '+chunk);
});
readStream.on('end', () => {

console.log('### DONE ###');
});

}

That is, the stream is in control and pushes data to the reader.

42.3 Async iteration over Node.js streams 461

42.3.2 Node.js streams: async via async iteration (pull)
Starting with Node.js 10, we can also use asynchronous iteration to read from streams:

async function main(inputFilePath) {
const readStream = fs.createReadStream(inputFilePath,

{ encoding: 'utf8', highWaterMark: 1024 });

for await (const chunk of readStream) {
console.log('>>> '+chunk);

}
console.log('### DONE ###');

}

This time, the reader is in control and pulls data from the stream.

42.3.3 Example: from chunks to lines
Node.js streams iterate over chunks (arbitrarily long pieces) of data. The following asyn-
chronous generator converts an async iterable over chunks to an async iterable over lines:

/**
* Parameter: async iterable of chunks (strings)
* Result: async iterable of lines (incl. newlines)
*/

async function* chunksToLines(chunksAsync) {
let previous = '';
for await (const chunk of chunksAsync) { // input

previous += chunk;
let eolIndex;
while ((eolIndex = previous.indexOf('\n')) >= 0) {

// line includes the EOL (Windows '\r\n' or Unix '\n')
const line = previous.slice(0, eolIndex+1);
yield line; // output
previous = previous.slice(eolIndex+1);

}
}
if (previous.length > 0) {

yield previous;
}

}

Let’s apply chunksToLines() to an async iterable over chunks (as produced by chunkIt-
erable()):

async function* chunkIterable() {
yield 'First\nSec';
yield 'ond\nThird\nF';
yield 'ourth';

}
const linesIterable = chunksToLines(chunkIterable());

462 42 Asynchronous iteration

assert.deepEqual(
await asyncIterableToArray(linesIterable),
[

'First\n',
'Second\n',
'Third\n',
'Fourth',

]);

Now that we have an asynchronous iterable over lines, we can use the solution of a pre-
vious exercise, numberLines(), to number those lines:

async function* numberLines(linesAsync) {
let lineNumber = 1;
for await (const line of linesAsync) {

yield lineNumber + ': ' + line;
lineNumber++;

}
}
const numberedLines = numberLines(chunksToLines(chunkIterable()));
assert.deepEqual(

await asyncIterableToArray(numberedLines),
[

'1: First\n',
'2: Second\n',
'3: Third\n',
'4: Fourth',

]);

Part IX

More standard library

463

Chapter 43

Regular expressions (RegExp)

Contents
43.1 Creating regular expressions . 466

43.1.1 Literal vs. constructor . 466
43.1.2 Cloning and non-destructively modifying regular expressions 466

43.2 Syntax . 467
43.2.1 Syntax characters . 467
43.2.2 Basic atoms . 467
43.2.3 Unicode property escapes [ES2018] 468
43.2.4 Character classes . 469
43.2.5 Groups . 470
43.2.6 Quantifiers . 470
43.2.7 Assertions . 470
43.2.8 Disjunction (|) . 471

43.3 Flags . 471
43.3.1 Flag: Unicode mode via /u . 473

43.4 Properties of regular expression objects 474
43.4.1 Flags as properties . 475
43.4.2 Other properties . 475

43.5 Methods for working with regular expressions 475
43.5.1 In general, regular expressions match anywhere in a string . . 475
43.5.2 regExp.test(str): is there a match? [ES3] 476
43.5.3 str.search(regExp): at what index is the match? [ES3] 476
43.5.4 regExp.exec(str): capturing groups [ES3] 476
43.5.5 str.match(regExp): return all matching substrings [ES3] 478
43.5.6 str.replace(searchValue, replacementValue) [ES3] 478
43.5.7 Other methods for working with regular expressions 480

43.6 Flag /g and its pitfalls . 480
43.6.1 Pitfall: You can’t inline a regular expression with flag /g 480
43.6.2 Pitfall: Removing /g can break code 481

465

466 43 Regular expressions (RegExp)

43.6.3 Pitfall: Adding /g can break code 481
43.6.4 Pitfall: Code can break if .lastIndex isn’t zero 481
43.6.5 Dealing with /g and .lastIndex 482

43.7 Techniques for working with regular expressions 483
43.7.1 Escaping arbitrary text for regular expressions 483
43.7.2 Matching everything or nothing 483

Availability of features
Unless stated otherwise, each regular expression feature has been available since
ES3.

43.1 Creating regular expressions
43.1.1 Literal vs. constructor
The two main ways of creating regular expressions are:

• Literal: compiled statically (at load time).
/abc/ui

• Constructor: compiled dynamically (at runtime).
new RegExp('abc', 'ui')

Both regular expressions have the same two parts:
• The body abc – the actual regular expression.
• The flags u and i. Flags configure how the pattern is interpreted. For example,

i enables case-insensitive matching. A list of available flags is given later in this
chapter.

43.1.2 Cloning and non-destructively modifying regular expressions
There are two variants of the constructor RegExp():

• new RegExp(pattern : string, flags = '') [ES3]

A new regular expression is created as specified via pattern. If flags is missing,
the empty string '' is used.

• new RegExp(regExp : RegExp, flags = regExp.flags) [ES6]

regExp is cloned. If flags is provided, then it determines the flags of the clone.
The second variant is useful for cloning regular expressions, optionally while modifying
them. Flags are immutable and this is the only way of changing them – for example:

function copyAndAddFlags(regExp, flagsToAdd='') {
// The constructor doesn’t allow duplicate flags;
// make sure there aren’t any:

43.2 Syntax 467

const newFlags = [...new Set(regExp.flags + flagsToAdd)].join('');
return new RegExp(regExp, newFlags);

}
assert.equal(/abc/i.flags, 'i');
assert.equal(copyAndAddFlags(/abc/i, 'g').flags, 'gi');

43.2 Syntax
43.2.1 Syntax characters
At the top level of a regular expression, the following syntax characters are special. They
are escaped by prefixing a backslash (\).

\ ^ $. * + ? () [] { } |

In regular expression literals, you must escape slashs:
> /\//.test('/')
true

In the argument of new RegExp(), you don’t have to escape slashes:
> new RegExp('/').test('/')
true

43.2.2 Basic atoms
Atoms are the basic building blocks of regular expressions.

• Pattern characters are all characters except syntax characters (^, $, etc.). Pattern char-
acters match themselves. Examples: A b %

• . matches any character. You can use the flag /s (dotall) to control if the dot
matches line terminators or not (more below).

• Character escapes (each escape matches a single fixed character):
– Control escapes (for a few control characters):

* \f: form feed (FF)
* \n: line feed (LF)
* \r: carriage return (CR)
* \t: character tabulation
* \v: line tabulation

– Arbitrary control characters: \cA (Ctrl-A), …, \cZ (Ctrl-Z)
– Unicode code units: \u00E4
– Unicode code points (require flag /u): \u{1F44D}

• Character class escapes (each escape matches one out of a set of characters):
– \d: digits (same as [0-9])

* \D: non-digits
– \w: “word” characters (same as [A-Za-z0-9_], related to identifiers in pro-
gramming languages)
* \W: non-word characters

– \s: whitespace (space, tab, line terminators, etc.)
* \S: non-whitespace

468 43 Regular expressions (RegExp)

– Unicode property escapes [ES2018]: \p{White_Space}, \P{White_Space}, etc.
* Require flag /u.
* Described in the next subsection.

43.2.3 Unicode property escapes [ES2018]

43.2.3.1 Unicode character properties

In the Unicode standard, each character has properties – metadata describing it. Proper-
ties play an important role in defining the nature of a character. Quoting the Unicode
Standard, Sect. 3.3, D3:

The semantics of a character are determined by its identity, normative prop-
erties, and behavior.

These are a few examples of properties:

• Name: a unique name, composed of uppercase letters, digits, hyphens, and spaces
– for example:

– A: Name = LATIN CAPITAL LETTER A
– ☺: Name = SLIGHTLY SMILING FACE

• General_Category: categorizes characters – for example:
– x: General_Category = Lowercase_Letter
– $: General_Category = Currency_Symbol

• White_Space: used for marking invisible spacing characters, such as spaces, tabs
and newlines – for example:

– \t: White_Space = True
– π: White_Space = False

• Age: version of the Unicode Standard in which a character was introduced – for
example: The Euro sign € was added in version 2.1 of the Unicode standard.

– €: Age = 2.1
• Block: a contiguous range of code points. Blocks don’t overlap and their names
are unique. For example:

– S: Block = Basic_Latin (range U+0000..U+007F)
– ☺: Block = Emoticons (range U+1F600..U+1F64F)

• Script: is a collection of characters used by one or more writing systems.
– Some scripts support several writing systems. For example, the Latin script
supports the writing systems English, French, German, Latin, etc.

– Some languages can be written in multiple alternate writing systems that are
supported by multiple scripts. For example, Turkish used the Arabic script
before it transitioned to the Latin script in the early 20th century.

– Examples:
* α: Script = Greek

* Д: Script = Cyrillic

43.2.3.2 Unicode property escapes

Unicode property escapes look like this:

1. \p{prop=value}: matches all characters whose property prop has the value value.

http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf
http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf

43.2 Syntax 469

2. \P{prop=value}: matches all characters that do not have a property prop whose
value is value.

3. \p{bin_prop}: matches all characters whose binary property bin_prop is True.
4. \P{bin_prop}: matches all characters whose binary property bin_prop is False.

Comments:
• You can only use Unicode property escapes if the flag /u is set. Without /u, \p is
the same as p.

• Forms (3) and (4) can be used as abbreviations if the property is General_Category.
For example, the following two escapes are equivalent:

\p{Lowercase_Letter}
\p{General_Category=Lowercase_Letter}

Examples:
• Checking for whitespace:

> /^\p{White_Space}+$/u.test('\t \n\r')
true

• Checking for Greek letters:
> /^\p{Script=Greek}+$/u.test('μετά')
true

• Deleting any letters:
> '1π2ü3é4'.replace(/\p{Letter}/ug, '')
'1234'

• Deleting lowercase letters:
> 'AbCdEf'.replace(/\p{Lowercase_Letter}/ug, '')
'ACE'

Further reading:
• Lists of Unicode properties and their values: “Unicode Standard Annex #44: Uni-
code Character Database” (Editors: Mark Davis, Laurențiu Iancu, Ken Whistler)

43.2.4 Character classes
A character class wraps class ranges in square brackets. The class ranges specify a set of
characters:

• [«class ranges»]matches any character in the set.
• [^«class ranges»]matches any character not in the set.

Rules for class ranges:
• Non-syntax characters stand for themselves: [abc]
• Only the following four characters are special and must be escaped via slashes:

^ \ -]

https://unicode.org/reports/tr44/#Properties
https://unicode.org/reports/tr44/#Properties

470 43 Regular expressions (RegExp)

– ^ only has to be escaped if it comes first.
– - need not be escaped if it comes first or last.

• Character escapes (\n, \u{1F44D}, etc.) have the usual meaning.
– Watch out: \b stands for backspace. Elsewhere in a regular expression, it
matches word boundaries.

• Character class escapes (\d, \p{White_Space}, etc.) have the usual meaning.
• Ranges of characters are specified via dashes: [a-z]

43.2.5 Groups
• Positional capture group: (#+)

– Backreference: \1, \2, etc.
• Named capture group [ES2018]: (?<hashes>#+)

– Backreference: \k<hashes>
• Noncapturing group: (?:#+)

43.2.6 Quantifiers
By default, all of the following quantifiers are greedy (they match as many characters as
possible):

• ?: match never or once
• *: match zero or more times
• +: match one or more times
• {n}: match n times
• {n,}: match n or more times
• {n,m}: match at least n times, at most m times.

To make them reluctant (so that they match as few characters as possible), put question
marks (?) after them:

> /".*"/.exec('"abc"def"')[0] // greedy
'"abc"def"'
> /".*?"/.exec('"abc"def"')[0] // reluctant
'"abc"'

43.2.7 Assertions
• ^matches only at the beginning of the input
• $matches only at the end of the input
• \bmatches only at a word boundary

– \Bmatches only when not at a word boundary

43.2.7.1 Lookahead
Positive lookahead: (?=«pattern»)matches if patternmatches what comes next.
Example: sequences of lowercase letters that are followed by an X.

43.3 Flags 471

> 'abcX def'.match(/[a-z]+(?=X)/g)
['abc']

Note that the X itself is not part of the matched substring.
Negative lookahead: (?!«pattern») matches if pattern does not match what comes
next.
Example: sequences of lowercase letters that are not followed by an X.

> 'abcX def'.match(/[a-z]+(?!X)/g)
['ab', 'def']

43.2.7.2 Lookbehind [ES2018]

Positive lookbehind: (?<=«pattern»)matches if patternmatches what came before.
Example: sequences of lowercase letters that are preceded by an X.

> 'Xabc def'.match(/(?<=X)[a-z]+/g)
['abc']

Negative lookbehind: (?<!«pattern») matches if pattern does not match what came
before.
Example: sequences of lowercase letters that are not preceded by an X.

> 'Xabc def'.match(/(?<!X)[a-z]+/g)
['bc', 'def']

Example: replace “.js” with “.html”, but not in “Node.js”.
> 'Node.js: index.js and main.js'.replace(/(?<!Node)\.js/g, '.html')
'Node.js: index.html and main.html'

43.2.8 Disjunction (|)
Caveat: this operator has low precedence. Use groups if necessary:

• ^aa|zz$matches all strings that start with aa and/or end with zz. Note that | has
a lower precedence than ^ and $.

• ^(aa|zz)$matches the two strings 'aa' and 'zz'.
• ^a(a|z)z$matches the two strings 'aaz' and 'azz'.

43.3 Flags

Table 43.1: These are the regular expression flags supported by
JavaScript.

Literal flag Property name ES Description
g global ES3 Match multiple times
i ignoreCase ES3 Match case-insensitively
m multiline ES3 ^ and $match per line

472 43 Regular expressions (RegExp)

Literal flag Property name ES Description
s dotall ES2018 Dot matches line terminators
u unicode ES6 Unicode mode (recommended)
y sticky ES6 No characters between matches

The following regular expression flags are available in JavaScript (tbl. 43.1 provides a
compact overview):

• /g (.global): fundamentally changes how the following methods work.
– RegExp.prototype.test()
– RegExp.prototype.exec()
– String.prototype.match()

How, is explained in §43.6 “Flag /g and its pitfalls”. In a nutshell, without /g, the
methods only consider the first match for a regular expression in an input string.
With /g, they consider all matches.

• /i (.ignoreCase): switches on case-insensitive matching:
> /a/.test('A')
false
> /a/i.test('A')
true

• /m (.multiline): If this flag is on, ^ matches the beginning of each line and $
matches the end of each line. If it is off, ^ matches the beginning of the whole
input string and $matches the end of the whole input string.

> 'a1\na2\na3'.match(/^a./gm)
['a1', 'a2', 'a3']
> 'a1\na2\na3'.match(/^a./g)
['a1']

• /u (.unicode): This flag switches on the Unicode mode for a regular expression.
That mode is explained in the next subsection.

• /y (.sticky): This flag mainly makes sense in conjunction with /g. When both are
switched on, any match must directly follow the previous one (that is, it must start
at index .lastIndex of the regular expression object). Therefore, the first match
must be at index 0.

> 'a1a2 a3'.match(/a./gy)
['a1', 'a2']
> '_a1a2 a3'.match(/a./gy) // first match must be at index 0
null

> 'a1a2 a3'.match(/a./g)
['a1', 'a2', 'a3']
> '_a1a2 a3'.match(/a./g)
['a1', 'a2', 'a3']

43.3 Flags 473

The main use case for /y is tokenization (during parsing).
• /s (.dotall): By default, the dot does not match line terminators. With this flag, it
does:

> /./.test('\n')
false
> /./s.test('\n')
true

Workaround if /s isn’t supported: Use [^] instead of a dot.
> /[^]/.test('\n')
true

43.3.1 Flag: Unicode mode via /u
The flag /u switches on a special Unicode mode for regular expressions. That mode en-
ables several features:

• In patterns, you can use Unicode code point escapes such as \u{1F42A} to specify
characters. Code unit escapes such as \u03B1 only have a range of four hexadeci-
mal digits (which corresponds to the basic multilingual plane).

• In patterns, you can use Unicode property escapes such as \p{White_Space}.
• Many escapes are now forbidden. For example: \a \- \:

Pattern characters always match themselves:
> /pa-:/.test('pa-:')
true

Without /u, there are some pattern characters that still match themselves if you
escape them with backslashes:

> /\p\a\-\:/.test('pa-:')
true

With /u:
– \p starts a Unicode property escape.
– The remaining “self-matching” escapes are forbidden. As a consequence,
they can now be used for new features in the future.

• The atomic units for matching are Unicode characters (code points), not JavaScript
characters (code units).

The following subsections explain the last item in more detail. They use the following
Unicode character to explain when the atomic units are Unicode characters and when
they are JavaScript characters:

const codePoint = '☺';
const codeUnits = '\uD83D\uDE42'; // UTF-16

assert.equal(codePoint, codeUnits); // same string!

474 43 Regular expressions (RegExp)

I’m only switching between ☺ and \uD83D\uDE42, to illustrate how JavaScript sees things.
Both are equivalent and can be used interchangeably in strings and regular expressions.

43.3.1.1 Consequence: you can put Unicode characters in character classes
With /u, the two code units of ☺ are treated as a single character:

> /^[☺]$/u.test('☺')
true

Without /u, ☺ is treated as two characters:
> /^[\uD83D\uDE42]$/.test('\uD83D\uDE42')
false
> /^[\uD83D\uDE42]$/.test('\uDE42')
true

Note that ^ and $ demand that the input string have a single character. That’s why the
first result is false.

43.3.1.2 Consequence: the dot operator (.) matches Unicode characters, not
JavaScript characters

With /u, the dot operator matches Unicode characters:
> '☺'.match(/./gu).length
1

.match() plus /g returns an Array with all the matches of a regular expression.
Without /u, the dot operator matches JavaScript characters:

> '\uD83D\uDE80'.match(/./g).length
2

43.3.1.3 Consequence: quantifiers apply to Unicode characters, not JavaScript char-
acters

With /u, a quantifier applies to the whole preceding Unicode character:
> /^☺{3}$/u.test('☺☺☺')
true

Without /u, a quantifier only applies to the preceding JavaScript character:
> /^\uD83D\uDE80{3}$/.test('\uD83D\uDE80\uDE80\uDE80')
true

43.4 Properties of regular expression objects
Noteworthy:

• Strictly speaking, only .lastIndex is a real instance property. All other properties
are implemented via getters.

43.5 Methods for working with regular expressions 475

• Accordingly, .lastIndex is the only mutable property. All other properties are
read-only. If you want to change them, you need to copy the regular expression
(consult §43.1.2 “Cloning and non-destructively modifying regular expressions”
for details).

43.4.1 Flags as properties
Each regular expression flag exists as a property with a longer, more descriptive name:

> /a/i.ignoreCase
true
> /a/.ignoreCase
false

This is the complete list of flag properties:
• .dotall (/s)
• .global (/g)
• .ignoreCase (/i)
• .multiline (/m)
• .sticky (/y)
• .unicode (/u)

43.4.2 Other properties
Each regular expression also has the following properties:

• .source [ES3]: The regular expression pattern
> /abc/ig.source
'abc'

• .flags [ES6]: The flags of the regular expression
> /abc/ig.flags
'gi'

• .lastIndex [ES3]: Used when flag /g is switched on. Consult §43.6 “Flag /g and its
pitfalls” for details.

43.5 Methods for working with regular expressions
43.5.1 In general, regular expressions match anywhere in a string
Note that, in general, regular expressions match anywhere in a string:

> /a/.test('__a__')
true

You can change that by using assertions such as ^ or by using the flag /y:
> /^a/.test('__a__')
false

476 43 Regular expressions (RegExp)

> /^a/.test('a__')
true

43.5.2 regExp.test(str): is there a match? [ES3]

The regular expression method .test() returns true if regExpmatches str:
> /bc/.test('ABCD')
false
> /bc/i.test('ABCD')
true
> /\.mjs$/.test('main.mjs')
true

With .test() you should normally avoid the /g flag. If you use it, you generally don’t
get the same result every time you call the method:

> const r = /a/g;
> r.test('aab')
true
> r.test('aab')
true
> r.test('aab')
false

The results are due to /a/ having twomatches in the string. After all of those were found,
.test() returns false.

43.5.3 str.search(regExp): at what index is the match? [ES3]

The string method .search() returns the first index of str at which there is a match for
regExp:

> '_abc_'.search(/abc/)
1
> 'main.mjs'.search(/\.mjs$/)
4

43.5.4 regExp.exec(str): capturing groups [ES3]

43.5.4.1 Getting a match object for the first match
Without the flag /g, .exec() returns the captures of the first match for regExp in str:

assert.deepEqual(
/(a+)b/.exec('ab aab'),
{

0: 'ab',
1: 'a',
index: 0,
input: 'ab aab',
groups: undefined,

43.5 Methods for working with regular expressions 477

}
);

The result is a match objectwith the following properties:

• [0]: the complete substring matched by the regular expression
• [1]: capture of positional group 1 (etc.)
• .index: where did the match occur?
• .input: the string that was matched against
• .groups: captures of named groups

43.5.4.2 Named capture groups [ES2018]

The previous example contained a single positional group. The following example
demonstrates named groups:

assert.deepEqual(
/(?<as>a+)b/.exec('ab aab'),
{

0: 'ab',
1: 'a',
index: 0,
input: 'ab aab',
groups: { as: 'a' },

}
);

In the result of .exec(), you can see that a named group is also a positional group – its
capture exists twice:

• Once as a positional capture (property '1').
• Once as a named capture (property groups.as).

43.5.4.3 Looping over multiple matches

If youwant to retrieve all matches of a regular expression (not just the first one), you need
to switch on the flag /g. Then you can call .exec()multiple times and get onematch each
time. After the last match, .exec() returns null.

> const regExp = /(a+)b/g;
> regExp.exec('ab aab')
{ 0: 'ab', 1: 'a', index: 0, input: 'ab aab', groups: undefined }
> regExp.exec('ab aab')
{ 0: 'aab', 1: 'aa', index: 3, input: 'ab aab', groups: undefined }
> regExp.exec('ab aab')
null

Therefore, you can loop over all matches as follows:

const regExp = /(a+)b/g;
const str = 'ab aab';

478 43 Regular expressions (RegExp)

let match;
// Check for null via truthiness
// Alternative: while ((match = regExp.exec(str)) !== null)
while (match = regExp.exec(str)) {

console.log(match[1]);
}
// Output:
// 'a'
// 'aa'

Sharing regular expressions with /g has a few pitfalls, which are explained later.

Exercise: Extract quoted text via .exec()
exercises/regexps/extract_quoted_test.mjs

43.5.5 str.match(regExp): return all matching substrings [ES3]

Without /g, .match() works like .exec() – it returns a single match object.
With /g, .match() returns all substrings of str that match regExp:

> 'ab aab'.match(/(a+)b/g)
['ab', 'aab']

If there is no match, .match() returns null:
> 'xyz'.match(/(a+)b/g)
null

You can use the Or operator to protect yourself against null:
const numberOfMatches = (str.match(regExp) || []).length;

43.5.6 str.replace(searchValue, replacementValue) [ES3]

.replace() is overloaded – it works differently, depending on the types of its parameters:
• If searchValue is:

– Regular expressionwithout /g: Replace first match of this regular expression.
– Regular expression with /g: Replace all matches of this regular expression.
– String: Replace first occurrence of this string (the string is interpreted ver-
batim, not as a regular expression). Alas, there is no way to replace every
occurrence of a string. Later in this chapter, we’ll see a tool function that
converts a string into a regular expression that matches this string (e.g., '*'
becomes /*/).

• If replacementValue is:
– String: Replace matches with this string. The character $ has special meaning
and lets you insert captures of groups and more (read on for details).

– Function: Compute strings that replace matches via this function.
The next two subsubsections assume that a regular expression with /g is being used.

43.5 Methods for working with regular expressions 479

43.5.6.1 replacementValue is a string
If the replacement value is a string, the dollar sign has special meaning – it inserts text
matched by the regular expression:

Text Result
$$ single $
$& complete match
$` text before match
$' text after match
$n capture of positional group n (n > 0)
$<name> capture of named group name [ES2018]

Example: Inserting the text before, inside, and after the matched substring.

> 'a1 a2'.replace(/a/g, "($`|$&|$')")
'(|a|1 a2)1 (a1 |a|2)2'

Example: Inserting the captures of positional groups.

> const regExp = /^([A-Za-z]+): (.*)$/ug;
> 'first: Jane'.replace(regExp, 'KEY: $1, VALUE: $2')
'KEY: first, VALUE: Jane'

Example: Inserting the captures of named groups.

> const regExp = /^(?<key>[A-Za-z]+): (?<value>.*)$/ug;
> 'first: Jane'.replace(regExp, 'KEY: $<key>, VALUE: $<value>')
'KEY: first, VALUE: Jane'

43.5.6.2 replacementValue is a function

If the replacement value is a function, you can compute each replacement. In the follow-
ing example, we multiply each non-negative integer that we find by two.

assert.equal(
'3 cats and 4 dogs'.replace(/[0-9]+/g, (all) => 2 * Number(all)),
'6 cats and 8 dogs'

);

The replacement function gets the following parameters. Note how similar they are to
match objects. These parameters are all positional, but I’ve includedhowonemight name
them:

• all: complete match
• g1: capture of positional group 1
• Etc.
• index: where did the match occur?
• input: the string in which we are replacing
• groups [ES2018]: captures of named groups (an object)

480 43 Regular expressions (RegExp)

Exercise: Change quotes via .replace() and a named group
exercises/regexps/change_quotes_test.mjs

43.5.7 Other methods for working with regular expressions
String.prototype.split() is described in the chapter on strings. Its first parameter of
String.prototype.split() is either a string or a regular expression. If it is the latter,
then captures of groups appear in the result:

> 'a:b : c'.split(':')
['a', 'b ', ' c']
> 'a:b : c'.split(/ *: */)
['a', 'b', 'c']
> 'a:b : c'.split(/(*):(*)/)
['a', '', '', 'b', ' ', ' ', 'c']

43.6 Flag /g and its pitfalls
The following two regular expression methods work differently if /g is switched on:

• RegExp.prototype.exec()
• RegExp.prototype.test()

Then they can be called repeatedly and deliver all matches inside a string. Property
.lastIndex of the regular expression is used to track the current position inside the string
– for example:

const r = /a/g;
assert.equal(r.lastIndex, 0);

assert.equal(r.test('aa'), true); // 1st match?
assert.equal(r.lastIndex, 1); // after 1st match

assert.equal(r.test('aa'), true); // 2nd match?
assert.equal(r.lastIndex, 2); // after 2nd match

assert.equal(r.test('aa'), false); // 3rd match?
assert.equal(r.lastIndex, 0); // start over

The next subsections explain the pitfalls of using /g. They are followed by a subsection
that explains how to work around those pitfalls.

43.6.1 Pitfall: You can’t inline a regular expression with flag /g

A regular expression with /g can’t be inlined. For example, in the following while loop,
the regular expression is created fresh, every time the condition is checked. Therefore, its
.lastIndex is always zero and the loop never terminates.

43.6 Flag /g and its pitfalls 481

let count = 0;
// Infinite loop
while (/a/g.test('babaa')) {

count++;
}

43.6.2 Pitfall: Removing /g can break code
If code expects a regular expression with /g and has a loop over the results of .exec() or
.test(), then a regular expression without /g can cause an infinite loop:

function countMatches(regExp) {
let count = 0;
// Infinite loop
while (regExp.exec('babaa')) {

count++;
}
return count;

}
countMatches(/a/); // Missing: flag /g

Why? Because .exec() always returns the first result, a match object, and never null.

43.6.3 Pitfall: Adding /g can break code
With .test(), there is another caveat: if you want to check exactly once if a regular ex-
pression matches a string, then the regular expression must not have /g. Otherwise, you
generally get a different result every time you call .test():

function isMatching(regExp) {
return regExp.test('Xa');

}
const myRegExp = /^X/g;
assert.equal(isMatching(myRegExp), true);
assert.equal(isMatching(myRegExp), false);

Normally, you won’t add /g if you intend to use .test() in this manner. But it can
happen if, for example, you use the same regular expression for testing and for replacing.

43.6.4 Pitfall: Code can break if .lastIndex isn’t zero
If you match a regular expression multiple times via .exec() or .test(), the current
position inside the input string is stored in the regular expression property .lastIndex.
Therefore, code that matches multiple times may break if .lastIndex is not zero:

function countMatches(regExp) {
let count = 0;
while (regExp.exec('babaa')) {

count++;
}
return count;

482 43 Regular expressions (RegExp)

}

const myRegExp = /a/g;
myRegExp.lastIndex = 4;
assert.equal(countMatches(myRegExp), 1); // should be 3

Note that .lastIndex is always zero in newly created regular expressions, but it may not
be if the same regular expression is used multiple times.

43.6.5 Dealing with /g and .lastIndex

As an example of dealing with /g and .lastIndex, we will implement the following
function:

countMatches(regExp, str)

It counts how often regExp has a match inside str. How do we prevent a wrong regExp
from breaking our code? Let’s look at three approaches.
First, we can throw an exception if /g isn’t set or .lastIndex isn’t zero:

function countMatches(regExp, str) {
if (!regExp.global) {

throw new Error('Flag /g of regExp must be set');
}
if (regExp.lastIndex !== 0) {

throw new Error('regExp.lastIndex must be zero');
}

let count = 0;
while (regExp.test(str)) {

count++;
}
return count;

}

Second, we can clone the parameter. That has the added benefit that regExp won’t be
changed.

function countMatches(regExp, str) {
const cloneFlags = regExp.flags + (regExp.global ? '' : 'g');
const clone = new RegExp(regExp, cloneFlags);

let count = 0;
while (clone.test(str)) {

count++;
}
return count;

}

Third, we can use .match() to count occurrences, which doesn’t change or depend on
.lastIndex.

43.7 Techniques for working with regular expressions 483

function countMatches(regExp, str) {
if (!regExp.global) {

throw new Error('Flag /g of regExp must be set');
}
return (str.match(regExp) || []).length;

}

43.7 Techniques for working with regular expressions
43.7.1 Escaping arbitrary text for regular expressions
The following function escapes an arbitrary text so that it is matched verbatim if you put
it inside a regular expression:

function escapeForRegExp(str) {
return str.replace(/[\\^$.*+?()[\]{}|]/g, '\\$&'); // (A)

}
assert.equal(escapeForRegExp('[yes?]'), String.raw`\[yes\?\]`);
assert.equal(escapeForRegExp('_g_'), String.raw`_g_`);

In line A, we escape all syntax characters. We have to be selective because the regular
expression flag /u forbids many escapes – for example: \a \: \-

The regular expression method .replace() only lets you replace plain text once. With
escapeForRegExp(), we can work around that limitation and replace plain text multiple
times:

const plainText = ':-)';
const regExp = new RegExp(escapeForRegExp(plainText), 'ug');
assert.equal(

':-) :-) :-)'.replace(regExp, '☺'), '☺ ☺ ☺');

43.7.2 Matching everything or nothing
Sometimes, you may need a regular expression that matches everything or nothing – for
example, as a default value.

• Match everything: /(?:)/

The empty group () matches everything. We make it non-capturing (via ?:), to
avoid unnecessary work.

> /(?:)/.test('')
true
> /(?:)/.test('abc')
true

• Match nothing: /.^/

^ only matches at the beginning of a string. The dot moves matching beyond the
first character and now ^ doesn’t match anymore.

484 43 Regular expressions (RegExp)

> /.^/.test('')
false
> /.^/.test('abc')
false

Chapter 44

Dates (Date)

Contents
44.1 Best practice: avoid the built-in Date 485

44.1.1 Things to look for in a date library 486
44.2 Time standards . 486

44.2.1 Background: UTC vs. Z vs. GMT 486
44.2.2 Dates do not support time zones 486

44.3 Background: date time formats (ISO) 487
44.3.1 Tip: append a Z to make date parsing deterministic 488

44.4 Time values . 488
44.4.1 Creating time values . 489
44.4.2 Getting and setting time values 489

44.5 Creating Dates . 489
44.5.1 Creating dates via numbers 489
44.5.2 Parsing dates from strings . 490
44.5.3 Other ways of creating dates 490

44.6 Getters and setters . 490
44.6.1 Time unit getters and setters 490

44.7 Converting Dates to strings . 491
44.7.1 Strings with times . 491
44.7.2 Strings with dates . 492
44.7.3 Strings with dates and times 492
44.7.4 Other methods . 492

This chapter describes JavaScript’s API for working with dates – the class Date.

44.1 Best practice: avoid the built-in Date

The JavaScript Date API is cumbersome to use. Hence, it’s best to rely on a library for
anything related to dates. Popular libraries include:

485

486 44 Dates (Date)

• Moment.js
• Day.js
• Luxon
• js-joda
• date-fns

Consult the blog post “Why you shouldn’t use Moment.js…” for the pros and cons of
these libraries.

Additionally, TC39 is working on a new date API for JavaScript: temporal.

44.1.1 Things to look for in a date library
Two things are important to keep in mind:

• Tree-shaking can considerably reduce the size of a library. It is a technique of only
deploying those exports of a library to a web server that are imported somewhere.
Functions are much more amenable to tree-shaking than classes.

• Support for time zones: As explained later, Date does not support time zones,
which introduces a number of pitfalls and is a key weakness. Make sure that your
date library supports them.

44.2 Time standards
44.2.1 Background: UTC vs. Z vs. GMT
UTC, Z, and GMT are ways of specifying time that are similar, but subtly different:

• UTC (Coordinated Universal Time) is the time standard that all times zones are
based on. They are specified relative to it. That is, no country or territory has UTC
as its local time zone.

• Z (Zulu Time Zone) is a military time zone that is often used in aviation and the
military as another name for UTC+0.

• GMT (Greenwich Mean Time) is a time zone used in some European and African
countries. It is UTC plus zero hours and therefore has the same time as UTC.

Sources:

• “The Difference Between GMT and UTC” at TimeAndDate.com
• “Z – Zulu Time Zone (Military Time)” at TimeAndDate.com

44.2.2 Dates do not support time zones
Dates support the following time standards:

• The local time zone (which depends on the current location)
• UTC
• Time offsets (relative to UTC)

https://momentjs.com
https://github.com/iamkun/dayjs
https://moment.github.io/luxon/
https://js-joda.github.io/js-joda/
https://github.com/date-fns/date-fns
https://inventi.studio/en/blog/why-you-shouldnt-use-moment-js
https://github.com/maggiepint/proposal-temporal
https://www.timeanddate.com/time/gmt-utc-time.html
https://www.timeanddate.com/time/zones/z

44.3 Background: date time formats (ISO) 487

Depending on the operation, only some of those options are available. For example,
when converting dates to strings or extracting time units such as the day of the month,
you can only choose between the local time zone and UTC.

Internally, Dates are stored as UTC. When converting from or to the local time zone, the
necessary offsets are determined via the date. In the following example, the local time
zone is Europe/Paris:

// CEST (Central European Summer Time)
assert.equal(

new Date('2122-06-29').getTimezoneOffset(), -120);

// CET (Central European Time)
assert.equal(

new Date('2122-12-29').getTimezoneOffset(), -60);

Whenever you create or convert dates, you need to bemindful of the time standard being
used – for example: new Date() uses the local time zonewhile .toISOString() usesUTC.

> new Date(2077, 0, 27).toISOString()
'2077-01-26T23:00:00.000Z'

Dates interpret 0 as January. The day of the month is 27 in the local time zone, but 26 in
UTC.

Documenting the time standards supported by each operation
In the remainder of this chapter, the supported time standards are noted for each
operation.

44.2.2.1 The downsides of not being able to specify time zones

Not being able to specify time zones has two downsides:

• It makes it impossible to support multiple time zones.

• It can lead to location-specific bugs. For example, the previous example produces
different results depending on where it is executed. To be safe:

– Use UTC-based operations whenever possible
– Use Z or a time offset when parsing strings (see the next section for more
information).

44.3 Background: date time formats (ISO)
Date time formats describe:

• The strings accepted by:
– Date.parse()
– new Date()

• The strings returned by (always longest format):

488 44 Dates (Date)

– Date.prototype.toISOString()

The following is an example of a date time string returned by .toISOString():
'2033-05-28T15:59:59.123Z'

Date time formats have the following structures:
• Date formats: Y=year; M=month; D=day

YYYY-MM-DD
YYYY-MM
YYYY

• Time formats: T=separator (the string 'T'); H=hour; m=minute; s=second andmil-
lisecond; Z=Zulu Time Zone (the string 'Z')

THH:mm:ss.sss
THH:mm:ss.sssZ

THH:mm:ss
THH:mm:ssZ

THH:mm
THH:mmZ

• Date time formats: are date formats followed by time formats.
– For example (longest): YYYY-MM-DDTHH:mm:ss.sssZ

Instead of Z (which is UTC+0), we can also specify time offsets relative to UTC:
• THH:mm+HH:mm (etc.)
• THH:mm-HH:mm (etc.)

44.3.1 Tip: append a Z to make date parsing deterministic
If you add a Z to the end of a string, date parsing doesn’t produce different results at
different locations:

• Without Z: Input is January 27 (in the Europe/Paris time zone), output is January
26 (in UTC).

> new Date('2077-01-27T00:00').toISOString()
'2077-01-26T23:00:00.000Z'

• With Z: Input is January 27, output is January 27.
> new Date('2077-01-27T00:00Z').toISOString()
'2077-01-27T00:00:00.000Z'

44.4 Time values
A time value represents a date via the number ofmilliseconds since 1 January 1970 00:00:00
UTC.

44.5 Creating Dates 489

Time values can be used to create Dates:
const timeValue = 0;
assert.equal(

new Date(timeValue).toISOString(),
'1970-01-01T00:00:00.000Z');

Coercing a Date to a number returns its time value:
> Number(new Date(123))
123

Ordering operators coerce their operands to numbers. Therefore, you can use these op-
erators to compare Dates:

assert.equal(
new Date('1972-05-03') < new Date('2001-12-23'), true);

// Internally:
assert.equal(73699200000 < 1009065600000, true);

44.4.1 Creating time values
The following methods create time values:

• Date.now(): number (UTC)
Returns the current time as a time value.

• Date.parse(dateTimeStr: string): number (local time zone, UTC, time offset)
Parses dateTimeStr and returns the corresponding time value.

• Date.UTC(year,month,date?,hours?,minutes?,seconds?,milliseconds?):
number (UTC)
Returns the time value for the specified UTC date time.

44.4.2 Getting and setting time values
• Date.prototype.getTime(): number (UTC)
Returns the time value corresponding to the Date.

• Date.prototype.setTime(timeValue) (UTC)
Sets this to the date encoded by timeValue.

44.5 Creating Dates
44.5.1 Creating dates via numbers
new Date(year: number, month: number, date?: number, hours?: number, min-
utes?: number, seconds?: number, milliseconds?: number) (local time zone)

490 44 Dates (Date)

Two of the parameters have pitfalls:
• For month, 0 is January, 1 is February, etc.
• If 0 ≤ year ≤ 99, then 1900 is added:

> new Date(12, 1, 22, 19, 11).getFullYear()
1912

That’s why, elsewhere in this chapter, we avoid the time unit year and always use
fullYear. But in this case, we have no choice.

Example:
> new Date(2077,0,27, 21,49).toISOString() // CET (UTC+1)
'2077-01-27T20:49:00.000Z'

Note that the input hours (21) are different from the output hours (20). The former refer
to the local time zone, the latter to UTC.

44.5.2 Parsing dates from strings
new Date(dateTimeStr: string) (local time zone, UTC, time offset)
If there is a Z at the end, UTC is used:

> new Date('2077-01-27T00:00Z').toISOString()
'2077-01-27T00:00:00.000Z'

If there is not Z or time offset at the end, the local time zone is used:
> new Date('2077-01-27T00:00').toISOString() // CET (UTC+1)
'2077-01-26T23:00:00.000Z'

If a string only contains a date, it is interpreted as UTC:
> new Date('2077-01-27').toISOString()
'2077-01-27T00:00:00.000Z'

44.5.3 Other ways of creating dates
• new Date(timeValue: number) (UTC)

> new Date(0).toISOString()
'1970-01-01T00:00:00.000Z'

• new Date() (UTC)
The same as new Date(Date.now()).

44.6 Getters and setters
44.6.1 Time unit getters and setters
Dates have getters and setters for time units – for example:

44.7 Converting Dates to strings 491

• Date.prototype.getFullYear()
• Date.prototype.setFullYear(num)

These getters and setters conform to the following patterns:

• Local time zone:
– Date.prototype.get«Unit»()
– Date.prototype.set«Unit»(num)

• UTC:
– Date.prototype.getUTC«Unit»()
– Date.prototype.setUTC«Unit»(num)

These are the time units that are supported:

• Date
– FullYear
– Month: month (0–11). Pitfall: 0 is January, etc.
– Date: day of the month (1–31)
– Day (getter only): day of the week (0–6, 0 is Sunday)

• Time
– Hours: hour (0–23)
– Minutes: minutes (0–59)
– Seconds: seconds (0–59)
– Milliseconds: milliseconds (0–999)

There is one more getter that doesn’t conform to the previously mentioned patterns:

• Date.prototype.getTimezoneOffset()

Returns the time difference between local time zone and UTC in minutes. For ex-
ample, for Europe/Paris, it returns -120 (CEST, Central European Summer Time)
or -60 (CET, Central European Time):

> new Date('2122-06-29').getTimezoneOffset()
-120
> new Date('2122-12-29').getTimezoneOffset()
-60

44.7 Converting Dates to strings
Example Date:

const d = new Date(0);

44.7.1 Strings with times
• Date.prototype.toTimeString() (local time zone)

> d.toTimeString()
'01:00:00 GMT+0100 (Central European Standard Time)'

492 44 Dates (Date)

44.7.2 Strings with dates
• Date.prototype.toDateString() (local time zone)

> d.toDateString()
'Thu Jan 01 1970'

44.7.3 Strings with dates and times
• Date.prototype.toString() (local time zone)

> d.toString()
'Thu Jan 01 1970 01:00:00 GMT+0100 (Central European Standard Time)'

• Date.prototype.toUTCString() (UTC)
> d.toUTCString()
'Thu, 01 Jan 1970 00:00:00 GMT'

• Date.prototype.toISOString() (UTC)
> d.toISOString()
'1970-01-01T00:00:00.000Z'

44.7.4 Other methods
The following three methods are not really part of ECMAScript, but rather of the ECMA-
Script internationalization API. That API has much functionality for formatting dates
(including support for time zones), but not for parsing them.

• Date.prototype.toLocaleTimeString()
• Date.prototype.toLocaleDateString()
• Date.prototype.toLocaleString()

Exercise: Creating a date string
exercises/dates/create_date_string_test.mjs

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

Chapter 45

Creating and parsing JSON (JSON)

Contents
45.1 The discovery and standardization of JSON 494

45.1.1 JSON’s grammar is frozen . 494
45.2 JSON syntax . 494
45.3 Using the JSON API . 495

45.3.1 JSON.stringify(data, replacer?, space?) 495
45.3.2 JSON.parse(text, reviver?) 496
45.3.3 Example: converting to and from JSON 497

45.4 Customizing stringification and parsing (advanced) 497
45.4.1 .stringfy(): specifying which properties of objects to stringify 498
45.4.2 .stringify() and .parse(): value visitors 498
45.4.3 Example: visiting values . 499
45.4.4 Example: stringifying unsupported values 499
45.4.5 Example: parsing unsupported values 500

45.5 FAQ . 501
45.5.1 Why doesn’t JSON support comments? 501

JSON (“JavaScript Object Notation”) is a storage format that uses text to encode data. Its
syntax is a subset of JavaScript expressions. As an example, consider the following text,
stored in a file jane.json:

{
"first": "Jane",
"last": "Porter",
"married": true,
"born": 1890,
"friends": ["Tarzan", "Cheeta"]

}

JavaScript has the global namespace object JSON that provides methods for creating and
parsing JSON.

493

494 45 Creating and parsing JSON (JSON)

45.1 The discovery and standardization of JSON
A specification for JSON was published by Douglas Crockford in 2001, at json.org. He
explains:

I discovered JSON. I do not claim to have invented JSON because it already
existed in nature. What I did was I found it, I named it, I described how it
was useful. I don’t claim to be the first person to have discovered it; I know
that there are other people who discovered it at least a year before I did. The
earliest occurrence I’ve found was, there was someone at Netscape whowas
using JavaScript array literals for doing data communication as early as 1996,
which was at least five years before I stumbled onto the idea.

Later, JSON was standardized as ECMA-404:

• 1st edition: October 2013
• 2nd edition: December 2017

45.1.1 JSON’s grammar is frozen
Quoting the ECMA-404 standard:

Because it is so simple, it is not expected that the JSON grammar will ever
change. This gives JSON, as a foundational notation, tremendous stability.

Therefore, JSON will never get improvements such as optional trailing commas, com-
ments, or unquoted keys – independently of whether or not they are considered desir-
able. However, that still leaves room for creating supersets of JSON that compile to plain
JSON.

45.2 JSON syntax
JSON consists of the following parts of JavaScript:

• Compound:
– Object literals:

* Property keys are double-quoted strings.
* Property values are JSON values.
* No trailing commas are allowed.

– Array literals:
* Elements are JSON values.
* No holes or trailing commas are allowed.

• Atomic:
– null (but not undefined)
– Booleans
– Numbers (excluding NaN, +Infinity, -Infinity)
– Strings (must be double-quoted)

As a consequence, you can’t (directly) represent cyclic structures in JSON.

http://json.org/
https://www.ecma-international.org/publications/standards/Ecma-404.htm

45.3 Using the JSON API 495

45.3 Using the JSON API
The global namespace object JSON contains methods for working with JSON data.

45.3.1 JSON.stringify(data, replacer?, space?)

.stringify() converts JavaScript data to a JSON string. In this section, we are ignoring
the parameter replacer; it is explained in §45.4 “Customizing stringification and pars-
ing”.

45.3.1.1 Result: a single line of text

If you only provide the first argument, .stringify() returns a single line of text:

assert.equal(
JSON.stringify({foo: ['a', 'b']}),
'{"foo":["a","b"]}');

45.3.1.2 Result: a tree of indented lines

If you provide a non-negative integer for space, then .stringify() returns one or more
lines and indents by space spaces per level of nesting:

assert.equal(
JSON.stringify({foo: ['a', 'b']}, null, 2),
`{

"foo": [
"a",
"b"

]
}`);

45.3.1.3 Details on how JavaScript data is stringified

Primitive values:

• Supported primitive values are stringified as expected:

> JSON.stringify('abc')
'"abc"'
> JSON.stringify(123)
'123'
> JSON.stringify(null)
'null'

• Unsupported numbers: 'null'

> JSON.stringify(NaN)
'null'
> JSON.stringify(Infinity)
'null'

496 45 Creating and parsing JSON (JSON)

• Other unsupported primitive values are not stringified; they produce the result
undefined:

> JSON.stringify(undefined)
undefined
> JSON.stringify(Symbol())
undefined

Objects:

• If an object has a method .toJSON(), then the result of that method is stringified:

> JSON.stringify({toJSON() {return true}})
'true'

Dates have a method .toJSON() that returns a string:

> JSON.stringify(new Date(2999, 11, 31))
'"2999-12-30T23:00:00.000Z"'

• Wrapped primitive values are unwrapped and stringified:

> JSON.stringify(new Boolean(true))
'true'
> JSON.stringify(new Number(123))
'123'

• Arrays are stringified asArray literals. UnsupportedArray elements are stringified
as if they were null:

> JSON.stringify([undefined, 123, Symbol()])
'[null,123,null]'

• All other objects – except for functions – are stringified as object literals. Properties
with unsupported values are omitted:

> JSON.stringify({a: Symbol(), b: true})
'{"b":true}'

• Functions are not stringified:

> JSON.stringify(() => {})
undefined

45.3.2 JSON.parse(text, reviver?)

.parse() converts a JSON text to a JavaScript value. In this section, we are ignoring the
parameter reviver; it is explained §45.4 “Customizing stringification and parsing”.

This is an example of using .parse():

> JSON.parse('{"foo":["a","b"]}')
{ foo: ['a', 'b'] }

45.4 Customizing stringification and parsing (advanced) 497

45.3.3 Example: converting to and from JSON
The following class implements conversions from (line A) and to (line B) JSON.

class Point {
static fromJson(jsonObj) { // (A)

return new Point(jsonObj.x, jsonObj.y);
}

constructor(x, y) {
this.x = x;
this.y = y;

}

toJSON() { // (B)
return {x: this.x, y: this.y};

}
}

• Converting JSON to a point: We use the static method Point.fromJson() to parse
JSON and create an instance of Point.

assert.deepEqual(
Point.fromJson(JSON.parse('{"x":3,"y":5}')),
new Point(3, 5));

• Converting a point to JSON: JSON.stringify() internally calls the previouslymen-
tioned method .toJSON().

assert.equal(
JSON.stringify(new Point(3, 5)),
'{"x":3,"y":5}');

Exercise: Converting an object to and from JSON
exercises/json/to_from_json_test.mjs

45.4 Customizing stringification and parsing (advanced)
Stringification and parsing can be customized as follows:

• JSON.stringify(data, replacer?, space?)

The optional parameter replacer contains either:
– An Array with names of properties. If a value in data is stringified as an
object literal, then only the mentioned properties are considered. All other
properties are ignored.

– A value visitor, a function that can transform JavaScript data before it is stringi-
fied.

• JSON.parse(text, reviver?)

498 45 Creating and parsing JSON (JSON)

The optional parameter reviver contains a value visitor that can transform the
parsed JSON data before it is returned.

45.4.1 .stringfy(): specifyingwhich properties of objects to stringify
If the second parameter of .stringify() is an Array, then only object properties, whose
names are mentioned there, are included in the result:

const obj = {
a: 1,
b: {

c: 2,
d: 3,

}
};
assert.equal(

JSON.stringify(obj, ['b', 'c']),
'{"b":{"c":2}}');

45.4.2 .stringify() and .parse(): value visitors
What I call a value visitor is a function that transforms JavaScript data:

• JSON.stringify() lets the value visitor in its parameter replacer transform
JavaScript data before it is stringified.

• JSON.parse() lets the value visitor in its parameter reviver transform parsed
JavaScript data before it is returned.

In this section, JavaScript data is considered to be a tree of values. If the data is atomic,
it is a tree that only has a root. All values in the tree are fed to the value visitor, one at
a time. Depending on what the visitor returns, the current value is omitted, changed, or
preserved.

A value visitor has the following type signature:

type ValueVisitor = (key: string, value: any) => any;

The parameters are:

• value: The current value.
• this: Parent of current value. The parent of the root value r is {'': r}.

– Note: this is an implicit parameter and only available if the value visitor is
an ordinary function.

• key: Key or index of the current value inside its parent. The key of the root value
is ''.

The value visitor can return:

• value: means there won’t be any change.
• A different value x: leads to value being replaced with x in the output tree.
• undefined: leads to value being omitted in the output tree.

45.4 Customizing stringification and parsing (advanced) 499

45.4.3 Example: visiting values
The following code shows in which order a value visitor sees values:

const log = [];
function valueVisitor(key, value) {

log.push({this: this, key, value});
return value; // no change

}

const root = {
a: 1,
b: {

c: 2,
d: 3,

}
};
JSON.stringify(root, valueVisitor);
assert.deepEqual(log, [

{ this: { '': root }, key: '', value: root },
{ this: root , key: 'a', value: 1 },
{ this: root , key: 'b', value: root.b },
{ this: root.b , key: 'c', value: 2 },
{ this: root.b , key: 'd', value: 3 },

]);

Aswe can see, the replacer of JSON.stringify() visits values top-down (root first, leaves
last). The rationale for going in that direction is that we are converting JavaScript values
to JSON values. And a single JavaScript object may be expanded into a tree of JSON-
compatible values.

In contrast, the reviver of JSON.parse() visits values bottom-up (leaves first, root last).
The rationale for going in that direction is that we are assembling JSON values into
JavaScript values. Therefore, we need to convert the parts before we can convert the
whole.

45.4.4 Example: stringifying unsupported values
JSON.stringify() has no special support for regular expression objects – it stringifies
them as if they were plain objects:

const obj = {
name: 'abc',
regex: /abc/ui,

};
assert.equal(

JSON.stringify(obj),
'{"name":"abc","regex":{}}');

We can fix that via a replacer:

500 45 Creating and parsing JSON (JSON)

function replacer(key, value) {
if (value instanceof RegExp) {

return {
__type__: 'RegExp',
source: value.source,
flags: value.flags,

};
} else {

return value; // no change
}

}
assert.equal(
JSON.stringify(obj, replacer, 2),
`{

"name": "abc",
"regex": {

"__type__": "RegExp",
"source": "abc",
"flags": "iu"

}
}`);

45.4.5 Example: parsing unsupported values
To JSON.parse() the result from the previous section, we need a reviver:

function reviver(key, value) {
// Very simple check
if (value && value.__type__ === 'RegExp') {

return new RegExp(value.source, value.flags);
} else {

return value;
}

}
const str = `{

"name": "abc",
"regex": {

"__type__": "RegExp",
"source": "abc",
"flags": "iu"

}
}`;
assert.deepEqual(

JSON.parse(str, reviver),
{

name: 'abc',
regex: /abc/ui,

});

45.5 FAQ 501

45.5 FAQ
45.5.1 Why doesn’t JSON support comments?
Douglas Crockford explains why in a Google+ post from 1 May 2012:

I removed comments from JSON because I saw people were using them to
hold parsing directives, a practice which would have destroyed interoper-
ability. I know that the lack of comments makes some people sad, but it
shouldn’t.
Suppose you are using JSON to keep configuration files, which you would
like to annotate. Go ahead and insert all the comments you like. Then pipe
it through JSMin [a minifier for JavaScript] before handing it to your JSON
parser.

https://web.archive.org/web/20190308024153/https://plus.google.com/+DouglasCrockfordEsq/posts/RK8qyGVaGSr

502 45 Creating and parsing JSON (JSON)

Part X

Miscellaneous topics

503

Chapter 46

Next steps: overview of web
development (bonus)

Contents
46.1 Tips against feeling overwhelmed 505
46.2 Things worth learning for web development 506

46.2.1 Keep an eye on WebAssembly (Wasm)! 507
46.3 Example: tool-based JavaScript workflow 508
46.4 An overview of JavaScript tools . 510

46.4.1 Building: getting from the JavaScript youwrite to the JavaScript
you deploy . 510

46.4.2 Static checking . 511
46.4.3 Testing . 512
46.4.4 Package managers . 512
46.4.5 Libraries . 512

46.5 Tools not related to JavaScript . 512

You now know most of the JavaScript language. This chapter gives an overview of web
development and describes next steps. It answers questions such as:

• What should I learn next for web development?
• What JavaScript-related tools should I know about?

46.1 Tips against feeling overwhelmed
Webdevelopment has become a vast field: Between JavaScript, web browsers, server-side
JavaScript, JavaScript libraries, and JavaScript tools, there is a lot to know. Additionally,
everything is always changing: some things go out of style, new things are invented, etc.
How can you avoid feeling overwhelmedwhen facedwith this constantly changing vast-
ness of knowledge?

505

506 46 Next steps: overview of web development (bonus)

• Focus on the web technologies that you work with most often and learn themwell.
If you do frontend development, that may be JavaScript, CSS, SVG, or something
else.

• For JavaScript: Know the language, but also try out one tool in each of the following
categories (which are covered in more detail later).

– Compilers: compile future JavaScript or supersets of JavaScript to normal
JavaScript.

– Bundlers: combine all modules used by a web app into a single file (a script
or a module). That makes loading faster and enables dead code elimination.

– Static checkers. For example:
* Linters: check for anti-patterns, style violations, and more.
* Type checkers: type JavaScript statically and report errors.

– Test libraries and tools
– Version control (usually git)

Trust in your ability to learn on demand
It is commendable to learn something out of pure curiosity. But I’m wary of trying
to learn everything and spreading yourself too thin. That also induces an anxiety
of not knowing enough (because you never will). Instead, trust in your ability to
learn things on demand!

46.2 Things worth learning for web development
These are a few things worth learning for web development:

• Browser APIs such as the Document Object Model (DOM), the browsers’ represen-
tation of HTML in memory. They are the foundations of any kind of frontend
development.

• JavaScript-adjacent technologies such as HTML and CSS.
• Frontend frameworks: When you get started with web development, it can be in-
structive to write user interfaces without any libraries. Once you feel more con-
fident, frontend frameworks make many things easier, especially for larger apps.
Popular frameworks include React, Angular, Vue, Ember, Svelte.

• Node.js is the most popular platform for server-side JavaScript. But it also lets you
run JavaScript in the command line. Most JavaScript-related tools (even compil-
ers!) are implemented in Node.js-based JavaScript and installed via npm. A good
way to get started with Node.js, is to use it for shell scripting.

• JavaScript tooling: Modern web development involves many tools. Later in this
chapter, there is an overview of the current tooling ecosystem.

• Progressive web apps: The driving idea behind progressive web apps is to give web
apps features that, traditionally, only native apps had – for example: native instal-
lation on mobile and desktop operating systems; offline operation; showing notifi-
cations to users. Google has published a checklist detailing what makes a web app
progressive. The minimum requirements are:

https://developers.google.com/web/progressive-web-apps/checklist

46.2 Things worth learning for web development 507

– The app must be served over HTTPS (not the unsecure HTTP).
– The app must have aWeb App Manifest file, specifying metadata such as app
name and icon (often inmultiple resolutions). The file(s) of the iconmust also
be present.

– The app must have a service worker: a base layer of the app that runs in the
background, in a separate process (independently of web pages). One of its
responsibilities is to keep the app functioning when there is no internet con-
nection. Among others, two mechanisms help it do that: It is a local proxy
that supervises all of theweb resource requests of the app. And it has access to
a browser’s cache. Therefore, it can use the cache to fulfill requests when the
app is offline – after initially caching all critical resources. Other capabilities
of service workers include synchronizing data in the background; receiving
server-sent push messages; and the aforementioned showing notifications to
users.

One good resource for learning web development – including and beyond JavaScript – is
MDN web docs.

46.2.1 Keep an eye on WebAssembly (Wasm)!
WebAssembly is a universal virtual machine that is built into most JavaScript engines.
You get the following distribution of work:

• JavaScript is for dynamic, higher-level code.
• WebAssembly is for static, lower-level code.

For static code, WebAssembly is quite fast: C/C++ code, compiled to WebAssembly, is
about 50% as fast as the same code, compiled to native (source). Use cases include sup-
port for new video formats, machine learning, gaming, etc.

WebAssembly works well as a compilation target for various languages. Does this mean
JavaScript will be compiled to WebAssembly or replaced by another language?

46.2.1.1 Will JavaScript be compiled to WebAssembly?

JavaScript engines performmany optimizations for JavaScript’s highly dynamic features.
If you wanted to compile JavaScript to WebAssembly, you’d have to implement these
optimizations on top of WebAssembly. The result would be slower than current engines
and have a similar code base. Therefore, you wouldn’t gain anything.

46.2.1.2 Will JavaScript be replaced by another language?

Does WebAssembly mean that JavaScript is about to be replaced by another language?
WebAssembly does make it easier to support languages other than JavaScript in web
browsers. But those languages face several challenges on that platform:

• All browser APIs are based on JavaScript.
• The runtimes (standard library, etc.) of other languages incur an additional mem-
ory overhead, whereas JavaScript’s runtime is already built into web browsers.

• JavaScript is well-known, has many libraries and tools, etc.

https://developer.mozilla.org/en-US/docs/Learn
https://webassembly.org
https://arxiv.org/abs/1901.09056

508 46 Next steps: overview of web development (bonus)

Additionally, many parts of the WebAssembly ecosystem (e.g., debugging) are works in
progress.
For dynamic code, JavaScript is comparatively fast. Therefore, for the foreseeable future,
it will probably remain the most popular choice for high-level code. For low-level code,
compiling more static languages (such as Rust) to WebAssembly is an intriguing option.
Given that it is just a virtual machine, there are not that many practically relevant things
to learn about WebAssembly. But it is worth keeping an eye on its evolving role in web
development. It is also becoming popular as a stand-alone virtual machine; e.g., sup-
ported by the WebAssembly System Interface.

46.3 Example: tool-based JavaScript workflow

code.js

index.html

<script src="code.js">
<script src="library.js">

library.js

loads loads

Figure 46.1: A classic, very simple web app: An HTML file refers to a JavaScript file
code.js, which imbues the former with interactivity. code.js uses the library li-
brary.js, which must also be loaded by the HTML file.

Fig. 46.1 depicts a classic web app – when web development was less sophisticated (for
better and for worse):

• index.html contains the HTML file that is opened in web browsers.
• code.js contains the JavaScript code loaded and used by index.html.
• That code depends on the library library.js, a file that was downloaded manu-
ally and put next to code.js. It is accessed via a global variable. Note that the
HTML file needs to load the dependency library.js for code.js. code.js can’t
do that itself.

Since then, JavaScript workflows have become more complex. Fig. 46.2 shows such a
workflow – one that is based on the JavaScript bundler webpack.
Let’s examine the pieces (data, tools, technologies) involved in this workflow:

• The app itself consists of multiple modules, written in TypeScript – a language that
is a statically typed superset of JavaScript. Each file is an ECMAScript module,
plus static type annotations.

• The library used by the app is now downloaded and installed via the npm pack-
age manager. It also transparently handles transitive dependencies – if this package

https://github.com/WebAssembly/WASI

46.3 Example: tool-based JavaScript workflow 509

Entry

Output

TypeScript
module

TypeScript
module

Library via
npm

importsimports

JS code JS code

bundle.js

index.html

<script src="bundle.js">

compiled to compiled to

loads

added to added to

added to

Figure 46.2: This is the workflow when developing a web app with the bundler webpack.
Our web app consists of multiple modules. We tell webpack, in which one execution
starts (the so-called entry point). It then analyzes the imports of the entry point, the im-
ports of the imports, etc., to determine what code is needed to run the app. All of that
code is put into a single script file.

510 46 Next steps: overview of web development (bonus)

depends on other packages, etc.
• All TypeScript files are compiled to plain JS via a loader, a plugin for webpack.
• The tool webpack combines all plain JavaScript files into a single JavaScript script
file. This process is called bundling. Bundling is done for two reasons:

– Downloading a single file is usually faster in web browsers.
– During bundling, you can performvarious optimizations, such as leaving out
code that isn’t used.

The basic structure is still the same: the HTML file loads a JavaScript script file via a
<script> element. However:

• The code is now modular without the HTML file having to know the modules.
• bundle.js only includes the code that is needed to run the app (vs. all of li-

brary.js).
• We used a package manager to install the libraries that our code depends on.
• The libraries aren’t accessed via global variables but via ES module specifiers.

In modern browsers, you can also deliver the bundle as a module (vs. as a script file).

46.4 An overview of JavaScript tools
Now that we have seen one workflow, let’s look at various categories of tools that are
popular in the world of JavaScript. You’ll see categories of tools and lots of names of
specific tools. The former are much more important. The names change, as tools come
into and out of style, but I wanted you to see at least some of them.

46.4.1 Building: getting from the JavaScript youwrite to the JavaScript
you deploy

Building JavaScript means getting from the JavaScript you write to the JavaScript you
deploy. The following tools are often involved in this process:

• Transpilers: A transpiler is a compiler that compiles source code to source code.
Two transpilers that are popular in the JavaScript community are:

– Babel compiles upcoming and modern JavaScript features to older versions
of the language. That means you can use new features in your code and still
run it on older browsers.

– TypeScript is a superset of JavaScript. Roughly, it is the latest version of
JavaScript plus static typing.

• Minifiers: Aminifier compiles JavaScript to equivalent, smaller (as in fewer charac-
ters) JavaScript. It does so by renaming variables, removing comments, removing
whitespace, etc.
For example, given the following input:

let numberOfOccurrences = 5;
if (Math.random()) {

// Math.random() is not zero

46.4 An overview of JavaScript tools 511

numberOfOccurrences++
}

A minifier might produce:

let a=5;Math.random()&&a++;

– Popular minifiers include: UglifyJS, babel-minify, Terser, and Closure Com-
piler.

• Bundlers: compile and optimize the code of a JavaScript app. The input of a
bundler is many files – all of the app’s code plus the libraries it uses. A bundler
combines these input files to produce fewer output files (which tends to improve
performance).

A bundler minimizes the size of its output via techniques such as tree-shaking. Tree-
shaking is a form of dead code elimination: only those module exports are put in
the output that are imported somewhere (across all code, while considering transi-
tive imports).

It is also common to perform compilation steps such as transpiling andminification
while bundling. In these cases, a bundler relies on the previously mentioned tools,
packaged as libraries.

– Popular bundlers include webpack, browserify, Rollup, and Parcel.

All of these tools and build steps are usually coordinated via so-called task runners (think
“make” in Unix). There are:

• Dedicated task runners: grunt, gulp, broccoli, etc.
• Tools that can be used as simple task runners: npm (via its “scripts”) and webpack
(via plugins).

46.4.2 Static checking
Static checkingmeans analyzing source code statically (without running it). It can be used
to detect a variety of problems. Tools include:

• Linters: check the source code for problematic patterns, unused variables, etc. Lin-
ters are especially useful if you are still learning the language because they point
out if you are doing something wrong.

– Popular linters include JSLint, JSHint, ESLint
• Code style checkers: check if code is formatted properly. They consider indenta-
tion, spaces after brackets, spaces after commas, etc.

– Example: JSCS (JavaScript Code Style checker)
• Code formatters: automatically format your code for you, according to rules that
you can customize.

– Example: Prettier
• Type checkers: add static type checking to JavaScript.

– Popular type checkers: TypeScript (which is also a transpiler), Flow.

http://lisperator.net/uglifyjs/
https://github.com/babel/minify
https://github.com/terser-js/terser
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://medium.com/@asyncmax/the-right-way-to-bundle-your-assets-for-faster-sites-over-http-2-437c37efe3ff
https://medium.com/@asyncmax/the-right-way-to-bundle-your-assets-for-faster-sites-over-http-2-437c37efe3ff

512 46 Next steps: overview of web development (bonus)

46.4.3 Testing
JavaScript has many testing frameworks – for example:

• Unit testing: Jasmine, Mocha, AVA, Jest, Karma, etc.
• Integration testing: Jenkins, Travis CI, etc.
• User interface testing: CasperJS, Protractor, Nightwatch.js, TestCafé, etc.

46.4.4 Package managers
The most popular package manager for JavaScript is npm. It started as a package man-
ager for Node.js but has since also become dominant for client-side web development
and tools of any kind.

There are alternatives to npm, but they are all based in one way or another on npm’s
software registry:

• Yarn is a different take on npm; some of the features it pioneered are now also
supported by npm.

• pnpm focuses on saving space when installing packages locally.

46.4.5 Libraries
• Various helpers: lodash (which was originally based on the Underscore.js library)
is one of the most popular general helper libraries for JavaScript.

• Data structures: The following libraries are two examples among many.
– Immutable.js provides immutable data structures for JavaScript.
– Immer is an interesting lightweight alternative to Immutable.js. It also
doesn’t mutate the data it operates on, but it works with normal objects and
Arrays.

• Date libraries: JavaScript’s built-in support for dates is limited and full of pitfalls.
The chapter on dates lists libraries that you can use instead.

• Internationalization: In this area, ECMAScript’s standard library is complemented
by the ECMAScript Internationalization API (ECMA-402). It is accessed via the
global variable Intl and available in most modern browsers.

• Implementing and accessing services: The following are two popular options that
are supported by a variety of libraries and tools.

– REST (Representative State Transfer) is one popular option for services and
based on HTTP(S).

– GraphQL is more sophisticated (for example, it can combine multiple data
sources) and supports a query language.

46.5 Tools not related to JavaScript
Given that JavaScript is just one of several kinds of artifacts involved inwebdevelopment,
more tools exist. These are but a few examples:

• CSS:
– Minifiers: reduce the size of CSS by removing comments, etc.

https://yarnpkg.com/en/
https://github.com/pnpm/pnpm
https://github.com/facebook/immutable-js/
https://github.com/mweststrate/immer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://graphql.org/

46.5 Tools not related to JavaScript 513

– Preprocessors: let you write compact CSS (sometimes augmented with con-
trol flow constructs, etc.) that is expanded into deployable, more verbose
CSS.

– Frameworks: provide helpwith layout, decent-looking user interface compo-
nents, etc.

• Images: Automatically optimizing the size of bitmap images, etc.

514 46 Next steps: overview of web development (bonus)

Part XI

Appendices

515

Chapter 47

Index

!x, 121
++x, 126
x++, 126
+x, 126
, (comma operator), 107
--x, 126
x--, 126
-x, 126
x && y, 120
x + y, 102
x - y, 125
x / y, 125
x << y, 137
x === y, 105
x >>> y, 137
x >> y, 137
x & y, 136
x ** y, 125
x * y, 125
x ^ y, 136
x ¦ y, 136
x ¦¦ y, 120
x ٪ y, 125
=, 103
c ? t : e, 119
__proto__, 284
~x, 137

accessor (object literal), 261
addition, 102
AMDmodule, 239

anonymous function expression, 210
argument, 217
argument vs. parameter, 217
Array, 313
Array hole, 323
Array index, 322
Array literal, 314
Array, dense, 323
Array, multidimensional, 321
Array, roles of an, 314
Array, sparse, 323
Array-destructuring, 391
Array-like object, 318
ArrayBuffer, 346
arrow function, 213
ASI (automatic semicolon insertion), 53
assert (module), 67
assertion, 65
assignment operator, 103
async, 445
async function, 443
async function*, 456
async-await, 443
asynchronous generator, 456
asynchronous iterable, 453
asynchronous iteration, 453
asynchronous iterator, 453
asynchronous programming, 411
attribute of a property, 280
automatic semicolon insertion (ASI), 53
await (async function), 447

517

518

await (asynchronous generator), 457

big endian, 350
binary integer literal, 124
binding (variable), 78
bitwise And, 136
bitwise Not, 137
bitwise Or, 136
bitwise Xor, 136
boolean, 115
Boolean(), 115
bound variable, 88
break, 192
bundler, 510
bundling, 510

call stack, 414
callback (asynchronous pattern), 421
callback function, 217
camel case, 47
catch, 205
class, 289
class, 289
class declaration, 289
class definition, 289
class expression, 289
class, mixin, 301
classes, private data for, 293
closure, 88
code point, 151
code unit, 151
coercion, 98
comma operator, 107
CommonJS module, 239
comparing by identity, 95
comparing by value, 94
computed property key, 272
concatenating strings, 159
conditional operator, 119
console, 59
console.error(), 63
console.log(), 62
const, 78
constant, 77
constructor function (role of an

ordinary function), 211
continue, 193
Converting to [type], 115

Coordinated Universal Time (UTC),
486

copy object deeply, 263
copy object shallowly, 263
currying, 230

dash case, 47
DataView, 346
date, 485
date time format, 487
decimal floating point literal, 125
decimal integer literal, 124
decrementation operator (prefix), 126
decrementation operator (suffix), 126
deep copy of an object, 263
default export, 243
default value (destructuring), 395
default value (parameter), 218
delete, 273
deleting a property, 273
dense Array, 323
descriptor of a property, 280
destructive operation, 325
destructuring, 387
destructuring an Array, 391
destructuring an object, 390
dictionary (role of an object), 259
direct method call, 300
dispatched method call, 300
divided by operator, 125
division, 125
do-while, 198
dynamic this, 214
dynamic vs. static, 81

early activation, 86
Ecma, 32
ECMA-262, 32
ECMAScript, 32
ECMAScript module, 240
Eich, Brendan, 31
endianness (Typed Arrays), 350
enumerability, 274
enumerable (property attribute), 274
environment (variables), 225
equality operator, 105
ES module, 240
escaping HTML, 181

519

eval(), 221
evaluating an expression, 50
event (asynchronous pattern), 419
event loop, 415
exception, 203
exercises, getting started with, 71
exponentiation, 125
export, 241
export default, 243
export, default, 243
export, named, 241
expression, 50
extends, 295
external iteration, 405
extracting a method, 267

false, 115
falsiness, 116
falsy, 116
finally, 206
flags (regular expression), 466
Float32Array, 346
Float64Array, 346
floating point literal, 125
for, 198
for-await-of, 456
for-in, 201
for-of, 199
free variable, 88
freezing an object, 280
fulfilled (Promise state), 425
function declaration, 210
function expression, anonymous, 210
function expression, named, 210
function, arrow, 213
function, ordinary, 209
function, roles of an ordinary, 211
function, specialized, 209
function*, 399

garbage collection, 95
generator, asynchronous, 456
generator, synchronous, 399
getter (object literal), 261
global, 83
global object, 82
global scope, 82
global variable, 82

globalThis, 82
GMT (Greenwich Mean Time), 486
grapheme cluster, 154
Greenwich Mean Time (GMT), 486

heap, 95
hexadecimal integer literal, 124
hoisting, 87
hole in an Array, 323

identifier, 47
identity of an object, 94
if, 194
IIFE (immediately invoked function

expression), 238
immediately invoked function

expression (IIFE), 238
import, 242
import(), 252
import, named, 242
import, namespace, 243
in, 273
incrementation operator (prefix), 126
incrementation operator (suffix), 126
index of an Array, 322
Infinity, 130
inheritance, multiple, 301
inheritance, single, 301
instanceof, 95, 292
Int16Array, 346
Int32Array, 346
Int8Array, 346
integer, 133
integer, safe, 134
internal iteration, 405
iterable (asynchronous), 453
iterable (synchronous), 308
iteration, asynchronous, 453
iteration, external, 405
iteration, internal, 405
iteration, synchronous, 307
iterator (asynchronous), 453
iterator (synchronous), 308

JSON (data format), 493
JSON (namespace object), 493

kebab case, 47
keyword, 49

520

label, 193
left shift operator, 137
let, 78
lexical this, 214
listing properties, 273
little endian, 350
logical And, 120
logical Not, 121
logical Or, 120

Map, 361
Map, 361
Map vs. object, 370
Math (namespace object), 143
method, 264
method (object literal), 261
method (role of an ordinary function),

211
method call, direct, 300
method call, dispatched, 300
method, extracting a, 267
minification, 510
minifier, 510
minus operator (binary), 125
minus operator (unary), 126
mixin class, 301
module specifier, 250
module, AMD, 239
module, CommonJS, 239
multidimensional Array, 321
multiple inheritance, 301
multiple return values, 393
multiplication, 125

named export, 241
named function expression, 210
named import, 242
named parameter, 219
namespace import, 243
NaN, 128
node_modules, 248
npm, 247
npm package, 247
null, 111
number, 123
Number(), 127

object, 257
object literal, 259

object vs. Map, 370
object vs. primitive value, 93
Object(), 98
object, copy deeply, 263
object, copy shallowly, 263
object, freezing an, 280
object, identity of an, 94
object, roles of an, 259
object-destructuring, 390
Object.is(), 106
octal integer literal, 124
ordinary function, 209
ordinary function, roles of an, 211
override a property, 285

package, npm, 247
package.json, 247
parameter, 217
parameter default value, 218
parameter vs. argument, 217
partial application, 230
passing by identity, 94
passing by value, 93
pattern (regular expression), 466
pending (Promise state), 425
plus operator (binary), 102
plus operator (unary), 126
polyfill, 256
polyfill, speculative, 256
ponyfill, 256
primitive value, 93
primitive value vs. object, 93
private data for classes, 293
progressive web app, 506
prollyfill, 256
Promise, 423
Promise, states of a, 425
properties, listing, 273
property (object), 258
property attribute, 280
property descriptor, 280
property key, 273
property key, computed, 272
property key, quoted, 271
property name, 273
property symbol, 273
property value shorthand, 260
property, deleting a, 273

521

prototype, 284
prototype chain, 284
publicly known symbol, 186

quizzes, getting started with, 71
quoted property key, 271

real function (role of an ordinary
function), 211

receiver, 261
record (role of an object), 259
RegExp, 465
regular expression, 465
regular expression literal, 466
rejected (Promise state), 425
remainder operator, 125
REPL, 61
replica, 256
RequireJS, 239
reserved word, 49
rest element (Array-destructuring), 392
rest parameter (function call), 218
rest property (object-destructuring),

391
return values, multiple, 393
revealing module pattern, 238
roles of an Array, 314
roles of an object, 259
roles of an ordinary function, 211
run-to-completion semantics, 418

safe integer, 134
scope of a variable, 79
script, 237
self, 83
sequence (role of an Array), 314
Set, 377
Set, 377
setter (object literal), 261
settled (Promise state), 425
shadowing, 81
shallow copy of an object, 263
shim, 256
signed right shift operator, 137
single inheritance, 301
sloppy mode, 55
snake case, 47
sparse Array, 323
specialized function, 209

specifier, module, 250
speculative polyfill, 256
spreading (...) into a function call, 220
spreading into an Array literal, 316
spreading into an object literal, 262
statement, 50
states of a Promise, 425
static, 292
static vs. dynamic, 81
strict mode, 55
string, 157
String(), 159
subclass, 295
subtraction, 125
switch, 195
symbol, 183
symbol, publicly known, 186
synchronous generator, 399
synchronous iterable, 308
synchronous iteration, 307
synchronous iterator, 308
syntax, 44

tagged template, 175
task queue, 415
task runner, 510
TC39, 33
TC39 process, 33
TDZ (temporal dead zone), 84
Technical Committee 39, 33
template literal, 174
temporal dead zone, 84
ternary operator, 119
this, 261
this, dynamic, 214
this, lexical, 214
this, pitfalls of, 270
this, values of, 270
throw, 204
time value, 488
times operator, 125
to the power of operator, 125
transpilation, 510
transpiler, 510
tree-shaking, 510
true, 115
truthiness, 116
truthy, 116

522

try, 205
tuple (role of an Array), 314
type, 91
type hierarchy, 92
type signature, 21
Typed Array, 345
typeof, 95
TypeScript, 510

Uint16Array, 346
Uint32Array, 346
Uint8Array, 346
Uint8ClampedArray, 346
undefined, 111
underscore case, 47
Unicode, 151
Unicode Transformation Format (UTF),

152
unit test, 72
unsigned right shift operator, 137
UTC (Coordinated Universal Time),

486
UTF (Unicode Transformation Format),

152
UTF-16, 153

UTF-32, 152
UTF-8, 153

variable, bound, 88
variable, free, 88
variable, scope of a, 79
void operator, 107

Wasm (WebAssembly), 507
WeakMap, 373
WeakMap, 373
WeakSet, 385
WeakSet, 385
Web Worker, 417
WebAssembly, 507
while, 197
window, 83
wrapper types (for primitive types), 98

yield (asynchronous generator), 457
yield (synchronous generator), 400
yield* (asynchronous generator), 457
yield* (synchronous generator), 403

Z (Zulu Time Zone), 486
Zulu Time Zone (Z), 486

	I Background
	About this book (ES2019 edition)
	About the content
	Previewing and buying this book
	About the author
	Acknowledgements

	FAQ: Book and supplementary material
	How to read this book
	I own a digital edition
	I own the print edition
	Notations and conventions

	Why JavaScript? (bonus)
	The cons of JavaScript
	The pros of JavaScript
	Pro and con of JavaScript: innovation

	The nature of JavaScript (bonus)
	JavaScript's influences
	The nature of JavaScript
	Tips for getting started with JavaScript

	History and evolution of JavaScript
	How JavaScript was created
	Standardizing JavaScript
	Timeline of ECMAScript versions
	Ecma Technical Committee 39 (TC39)
	The TC39 process
	FAQ: TC39 process
	Evolving JavaScript: Don't break the web

	FAQ: JavaScript
	What are good references for JavaScript?
	How do I find out what JavaScript features are supported where?
	Where can I look up what features are planned for JavaScript?
	Why does JavaScript fail silently so often?
	Why can't we clean up JavaScript, by removing quirks and outdated features?
	How can I quickly try out a piece of JavaScript code?

	II First steps
	The big picture
	What are you learning in this book?
	The structure of browsers and Node.js
	JavaScript references
	Further reading

	Syntax
	An overview of JavaScript's syntax
	(Advanced)
	Identifiers
	Statement vs. expression
	Ambiguous syntax
	Semicolons
	Automatic semicolon insertion (ASI)
	Semicolons: best practices
	Strict mode vs. sloppy mode

	Consoles: interactive JavaScript command lines
	Trying out JavaScript code
	The console.* API: printing data and more

	Assertion API
	Assertions in software development
	How assertions are used in this book
	Normal comparison vs. deep comparison
	Quick reference: module assert

	Getting started with quizzes and exercises
	Quizzes
	Exercises
	Unit tests in JavaScript

	III Variables and values
	Variables and assignment
	let
	const
	Deciding between const and let
	The scope of a variable
	(Advanced)
	Terminology: static vs. dynamic
	Global variables and the global object
	Declarations: scope and activation
	Closures
	Further reading

	Values
	What's a type?
	JavaScript's type hierarchy
	The types of the language specification
	Primitive values vs. objects
	The operators typeof and instanceof: what's the type of a value?
	Classes and constructor functions
	Converting between types

	Operators
	Making sense of operators
	The plus operator (+)
	Assignment operators
	Equality: == vs. ===
	Ordering operators
	Various other operators

	IV Primitive values
	The non-values undefined and null
	undefined vs. null
	Occurrences of undefined and null
	Checking for undefined or null
	undefined and null don't have properties
	The history of undefined and null

	Booleans
	Converting to boolean
	Falsy and truthy values
	Truthiness-based existence checks
	Conditional operator (? :)
	Binary logical operators: And (x && y), Or (x || y)
	Logical Not (!)

	Numbers
	JavaScript only has floating point numbers
	Number literals
	Arithmetic operators
	Converting to number
	Error values
	Error value: NaN
	Error value: Infinity
	The precision of numbers: careful with decimal fractions
	(Advanced)
	Background: floating point precision
	Integers in JavaScript
	Bitwise operators
	Quick reference: numbers

	Math
	Data properties
	Exponents, roots, logarithms
	Rounding
	Trigonometric Functions
	Various other functions
	Sources

	Unicode – a brief introduction (advanced)
	Code points vs. code units
	Encodings used in web development: UTF-16 and UTF-8
	Grapheme clusters – the real characters

	Strings
	Plain string literals
	Accessing characters and code points
	String concatenation via +
	Converting to string
	Comparing strings
	Atoms of text: Unicode characters, JavaScript characters, grapheme clusters
	Quick reference: Strings

	Using template literals and tagged templates
	Disambiguation: ``template''
	Template literals
	Tagged templates
	Raw string literals
	(Advanced)
	Multiline template literals and indentation
	Simple templating via template literals

	Symbols
	Use cases for symbols
	Publicly known symbols
	Converting symbols

	V Control flow and data flow
	Control flow statements
	Conditions of control flow statements
	Controlling loops: break and continue
	if statements
	switch statements
	while loops
	do-while loops
	for loops
	for-of loops
	for-await-of loops
	for-in loops (avoid)

	Exception handling
	Motivation: throwing and catching exceptions
	throw
	The try statement
	Error classes

	Callable values
	Kinds of functions
	Ordinary functions
	Specialized functions
	More kinds of functions and methods
	Returning values from functions and methods
	Parameter handling
	Dynamically evaluating code: eval(), new Function() (advanced)

	Environments: under the hood of variables (bonus)
	Environment: data structure for managing variables
	Recursion via environments
	Nested scopes via environments
	Closures and environments

	VI Modularity
	Modules
	Overview: syntax of ECMAScript modules
	JavaScript source code formats
	Before we had modules, we had scripts
	Module systems created prior to ES6
	ECMAScript modules
	Named exports and imports
	Default exports and imports
	More details on exporting and importing
	npm packages
	Naming modules
	Module specifiers
	Loading modules dynamically via import()
	Preview: import.meta.url
	Polyfills: emulating native web platform features (advanced)

	Single objects
	What is an object?
	Objects as records
	Spreading into object literals (...)
	Methods
	Objects as dictionaries (advanced)
	Standard methods (advanced)
	Advanced topics

	Prototype chains and classes
	Prototype chains
	Classes
	Private data for classes
	Subclassing
	FAQ: objects

	VII Collections
	Synchronous iteration
	What is synchronous iteration about?
	Core iteration constructs: iterables and iterators
	Iterating manually
	Iteration in practice
	Quick reference: synchronous iteration

	Arrays (Array)
	The two roles of Arrays in JavaScript
	Basic Array operations
	for-of and Arrays
	Array-like objects
	Converting iterable and Array-like values to Arrays
	Creating and filling Arrays with arbitrary lengths
	Multidimensional Arrays
	More Array features (advanced)
	Adding and removing elements (destructively and non-destructively)
	Methods: iteration and transformation (.find(), .map(), .filter(), etc.)
	.sort(): sorting Arrays
	Quick reference: Array<T>

	Typed Arrays: handling binary data (Advanced)
	The basics of the API
	Element types
	More information on Typed Arrays
	Quick references: indices vs. offsets
	Quick reference: ArrayBuffers
	Quick reference: Typed Arrays
	Quick reference: DataViews

	Maps (Map)
	Using Maps
	Example: Counting characters
	A few more details about the keys of Maps (advanced)
	Missing Map operations
	Quick reference: Map<K,V>
	FAQ: Maps

	WeakMaps (WeakMap)
	WeakMaps are black boxes
	The keys of a WeakMap are weakly held
	Examples
	WeakMap API

	Sets (Set)
	Using Sets
	Examples of using Sets
	What Set elements are considered equal?
	Missing Set operations
	Quick reference: Set<T>
	FAQ: Sets

	WeakSets (WeakSet)
	Example: Marking objects as safe to use with a method
	WeakSet API

	Destructuring
	A first taste of destructuring
	Constructing vs. extracting
	Where can we destructure?
	Object-destructuring
	Array-destructuring
	Examples of destructuring
	What happens if a pattern part does not match anything?
	What values can't be destructured?
	(Advanced)
	Default values
	Parameter definitions are similar to destructuring
	Nested destructuring

	Synchronous generators (advanced)
	What are synchronous generators?
	Calling generators from generators (advanced)
	Background: external iteration vs. internal iteration
	Use case for generators: reusing traversals
	Advanced features of generators

	VIII Asynchronicity
	Asynchronous programming in JavaScript
	A roadmap for asynchronous programming in JavaScript
	The call stack
	The event loop
	How to avoid blocking the JavaScript process
	Patterns for delivering asynchronous results
	Asynchronous code: the downsides
	Resources

	Promises for asynchronous programming
	The basics of using Promises
	Examples
	Error handling: don't mix rejections and exceptions
	Promise-based functions start synchronously, settle asynchronously
	Promise.all(): concurrency and Arrays of Promises
	Tips for chaining Promises
	Advanced topics

	Async functions
	Async functions: the basics
	Returning from async functions
	await: working with Promises
	(Advanced)
	Immediately invoked async arrow functions
	Concurrency and await
	Tips for using async functions

	Asynchronous iteration
	Basic asynchronous iteration
	Asynchronous generators
	Async iteration over Node.js streams

	IX More standard library
	Regular expressions (RegExp)
	Creating regular expressions
	Syntax
	Flags
	Properties of regular expression objects
	Methods for working with regular expressions
	Flag /g and its pitfalls
	Techniques for working with regular expressions

	Dates (Date)
	Best practice: avoid the built-in Date
	Time standards
	Background: date time formats (ISO)
	Time values
	Creating Dates
	Getters and setters
	Converting Dates to strings

	Creating and parsing JSON (JSON)
	The discovery and standardization of JSON
	JSON syntax
	Using the JSON API
	Customizing stringification and parsing (advanced)
	FAQ

	X Miscellaneous topics
	Next steps: overview of web development (bonus)
	Tips against feeling overwhelmed
	Things worth learning for web development
	Example: tool-based JavaScript workflow
	An overview of JavaScript tools
	Tools not related to JavaScript

	XI Appendices
	Index

