
����
����
����
����

����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��
��
��
��
��

��
��
��
��
��

P1

P2

P4P3

P5

P6

Platform graph

Application graph A2

Application graph A1

T5

T2

T4

T3

T1

T6

T1

T2

Figure 1: Examples of platform and applications

1 Notations

We have many instances of an application represented by a directed acyclic
graph (DAG) to schedule over a computer platform represented by a general
graph.

Let GA = (VA, EA) be the directed application graph, where VA = {T1, . . . , Tn}
and |EA| = m. To simplify some equations, we assume, without any loss of gen-
erality, that tasks are numbered in a topological order. Especially, T1 is the first
task and Tn is the last one. The size of the file to transmit from Tk to Tl is
given by datak,l.

Let GP = (VP , EP) be the undirected platform graph, where VP = {P1, . . . , Pp}.
The time to transmit a unitary file from Pq to Pr is given by cq,r. Task Tk needs
a time wi,k to be entirely processed by processor Pi.

We use a bidirectionnal, bounded multiport model for communications, and
we allow the overlap of computations by communications.

We are looking for a steady-state schedule, which maximizes the throughput
of the complete platfom. An allocation is a mapping of VA over VP and a
mapping of EA over the path of EP , such that all dependence is correctly
processed: any task must have all its files before being processed.

Figure 1 shows an example of platform graph, and two small examples of
application graphs.

1

1.1 Glossary

application: An application is a directed acyclic graph, composed of a set
of tasks, or jobs, called Tks which are the vertices of the graph, and of
dependences between tasks, or files, called Tk → Tls, which are the edges
of the graph. The file Tkl represents a result of Tk and is necessary to the
computation of Tl.

platform: A platform is a directed graph, made of a set of processors, or work-
ers, called Pis, which are the vertices of the graph, and of communication
links, called Pi → Pjs, which are the edges of the graph. We assume that
this graph is a fully connected graph. TODO comment dit-on fortement
connexe ? Any processor can be used for processing tasks and for trans-
mitting a file from a neighbour to another. In other words, there is no
distinction between routers and actual computational processors.

allocation: An allocation is a mapping of each task Tk on a set of processors
Pi and a mapping of each communication Tk → Tl on a set of paths
Pi ; Pj . To be valid, any allocation has to satisfy several properties
given in Subsection 1.2.

troughput: The throughput of an allocation scheme is the average number
of processed allocations in one time unit.

transfer: A transfer is the sending of a file Tk → Tl from a source processor
Pi, such that Tk is processed by Pi, to a destination processor Pj . The
only use to such a transfer is the processing of Tl by Pj , even if we consider
allocations as valid when we have useless transfers.

communication: A transfer is made of several communications between neigh-
bours. The source processor sends the file to one of its neighbours, which
forwards to one of its own neighbours, and so on, until the file reaches its
destination processor. A transfer is made of at least one communication.

path: A path Pi ; Pj is the sequence of processors (Pi1 , . . . , Pik
) traversed

by a file during its transfer. A priori, it exists several different paths for a
given couple (source, destination).

instance: As said before, we want to schedule multiple instances of the same
application graph. Two different instances correspond to two different set
of initial data. By example, when we want to apply sequentially several
filters, say, k filters, to a set of n pictures, then we have k differents tasks,
and n instances. Any of the k tasks has to be processed n times.

copy: Contrary to our definition of instance, two copies of a file or a task
correspond to the same initial set of data.

duplication:

2

1.2 Definition of a valid allocation

A valid allocation is a mapping of each task Tk on a set of processors Pi and
a mapping of each communication Tk → Tl on a set of paths Pi ; Pj . The
throughput ρ of an allocation is the number of final task, which can be processed
during a time unit. We define T = 1/ρ. Moreover, the following properties have
to be respected:

1. any task Tk cannot be partially computed by a processor Pi,

2. any file Tk → Tl cannot be partially sent from a processor Pi to a processor
Pj ,

3. at least the final task is processed,

4. for any task Tl, if Tl is processed by processor Pj , then all files Tk → Tl

must be sent to Pj ,

5. any resource is busy for at most T time units,

6. for any task Tk, if Tk is processed by processor Pi, then any file Tk → Tl

can be sent by Pi,

7. any task is processed by exactly one processor if we do not allow task
duplication.

1.3 From an allocation to a complete schedule

2 Different linear programs, for allocations with-

out duplication

2.1 Compact linear program, for a linear chain of tasks

This is the simplest case. We want to maximize the number of processed DAGs
in a single time unit.

2.1.1 Notations

• yk
i is the average number of tasks Tk processed by Pi in one time unit,

• fkl(Pi → Pj) is the average number of files Tk → Tl sent by Pi → Pj in
one time unit,

3

2.1.2 Linear program

We want to minimize T under the following constraints:

∀Tk

∑

Pi
yk

i = 1
∀Pi

∑

Tk
yk

i × wi,k ≤ T

∀Tk, ∀Pi yk
i ≥ 0

∀Pi,
∑

Pj→Pi

∑

Tk→Tl
fkl(Pj → Pi) × ci,j × datak,l ≤ T

∀Pi,
∑

Pi→Pj

∑

Tk→Tl
fkl(Pi → Pj) × ci,j × datak,l ≤ T

∀Tk → Tl, ∀Pi → Pj fkl(Pi → Pj) ≥ 0

∀Pi, ∀Tk → Tl,
∑

Pj→Pi
fkl(Pj → Pi) −

∑

Pi→Pj
fkl(Pi → Pj) = yl

i − yk
i

(1)

2.2 Compact linear program, for multiple tasks

2.3 Extensive linear program, for multiple tasks

2.4 Compact linear program, for a single allocation and

multiple tasks

2.5 Linear Program no
365, for a single allocation for mul-

tiple tasks, fixed routing

In this subsection, we assume that the path between each couple of processors is
fixed before the execution of the algorithm. Figure 2 illustrates the fixed routing
of the platform: any communication from P2 to P5 is sent through P3.

We define two new notations:

• yk
i is a binary variable, yk

i = 1 iff Tk is processed on Pi

• xkl
ij ∈ {0, 1}, xkl

ij = 1 iff Tk → Tl is mapped on the path Pi ; Pj , which is
unique by assumption.

We want to minimize T under the following constraints:



























































∀Tk, ∀Pi yk
i ∈ {0, 1}

∀Tk → Tl, ∀Pi ; Pj xkl
ij ∈ {0, 1}

∀Tk

∑

Pi
yk

i = 1

∀Tk → Tl, ∀Pi ; Pj xkl
ij ≤ yk

i

∀Tl, ∀Tk → Tl, ∀Pj yk
j +

∑

Pi;Pj
xkl

ij ≥ yl
j

∀Pi,
∑

Tk
yk

i wi,k ≤ T

∀Pi → Pj ,
∑

Pq;Pr ,Pi→Pj∈Pq;Pr

(
∑

Tk→Tl

(

xkl
qrci,jdatak,l

))

≤ T

(2)

4

����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����

����
����
����
����
����

��
��
��

��
��
��

�
�
�
�

P1

P2

P4P3

P5

P6

Figure 2: Example of fixed routing of Application A1: both messages T2 → T4

and T3 → T5 are sent through P3.

Proof. all constraints are respected We have to be sure that any solution
returned by our linear program is valid, i.e. all properties given in Sub-
section 1.2.

• Property 1 is respected, since the yk
i are binary variables (line 1).

• Property 2 is respected, since the xkl
ij are binary variables (line 2),

• Property 3: all tasks are processed by exactly one processor (line 3),
so the last one is processed by at least one.

• Property 4: let consider any task Tl and any of its input file Tk → Tl.
If Tl is processed by Pj , then we have yl

j = 1 and the file is correctly
sent to Pj by one of the Pis or processed by Pj itself (line 5).

• Property 5: lines 6 and 7 ensure that this constraint is respected.

• Property 6: let consider any file Tk → Tl sent by Pi to Pj . Then we
have xkl

ij = 1 and thus yk
i = 1 (line 2): Tk is processed by Pi.

• Property 7: any task is processed by exactly one processor (line 1).

constraints are not too strong Let consider any valid allocation A, which
satisfies all properties given in Subsection 1.2. We show that A also sat-
isfies the previous linear program.

1. The property 1 ensures that we can set yk
i to 0 if Pi does not process

Tk or to 1 if it does.

5

2. The property 2 ensures that we can set xkl
ij to 1 if the file Tk → Tl is

sent from Pi to Pj , or to 0 if it is not.

3. The property 7 ensures that each task is processed by exactly one
processor. By definition of the yk

i s, exactly one yk
i is equal to 1 and

the other ones are equal to 0. Thus, the third constraint is respected.

4. Let consider any task Tk, any file Tk → Tl and any processors Pi

and Pj . From property 6, we know that if Tk → Tl is sent from Pi

to Pj (thus, xkl
ij = 1), then Tk is processed by Pi (thus, yk

i = 1).
In this case, the fourth constraint is respected. If there is no such
communication, then we have xkl

ij is equal to 0 and the constraint is
always respected.

5. Let consider any task Tl, any file Tk → Tl and any processor Pj . From
property 4, we know that if Tl is processed by Pj (thus, yl

j = 1), then

the file Tk → Tl is sent from at least one Pi to Pj (thus, xkl
ij = 1) or

Tk is processed by Pj (thus, yk
j = 1). In this case, the fifth constraint

is respected. If Tl is not processed by Pj , then we have yl
j = 0 and

the constraint is always respected.

6. Following property 5, all processors have a computation time smaller
than T time units, and the computation time of processor Pi is equal
to

∑

Tk
yk

i wk
i . Then the sixth constraint is respected.

7. Following property 5, all communication links have a communica-
tion time smaller than T time units, and the communication time of
link Pi → Pj is equal to

∑

Tk→Tl

(

xkl
qrci,jdatak,l

)

. Then the seventh
constraint is respected.

2.6 Linear Program no
365, for a single allocation for mul-

tiple tasks, flexible routing

In the previous subsection, any communication from a processor Pi to another
processor Pj follows a fixed path Pi ; Pj . If there is no external constraint on
the path followed by such a communication, we could allow the linear program
to choose the best path for each communication. By example, a file Tk → Tl

and a file Tk′ → Tl′ sent by the same processor Pi to the same processor Pj

could follow different paths, as presented in Figure 3. This subsection addresses
this new problem. Moreover, we could allow a given file Tk → Tl sent from Pi

to Pj to be sent in several parts following different paths, like IP packets over
the internet, as presented in Figure 4.

Before writing the complete linear program solving this problem, we explain
the new variables we introduce here.

Let consider any file Tk → Tl. We look for a function fkl : EP 7→ R, such
that fkl(Pi → Pj) is equal to the fraction of the file Tk → Tl sent through the
link Pi → Pj .

6

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

�
�
�
�

����
����
����
����
����

����
����
����
����
����

��
��
��
��

��
��
��
��

P1

P2

P4P3

P5

P6

Figure 3: Messages T2 → T4 and
T3 → T5 of Application A1 are
sent from P2 to P5 through differ-
ent links.

����
����
����
����

��
��
��
��
��

��
��
��
��
��

P1

P2

P4P3

P5

P6

Figure 4: The file T1 → T2 of Ap-
plication A2 is split in two parts
sent from P2 to P5 through differ-
ent links.

Let consider the same file Tk → Tl and any processor Pq. The total fraction
of this file received by Pq from its neighbours is equal to

∑

Pr→Pq
fkl(Pr →

Pq). The total fraction of this file sent by Pq to its neighbours is equal to
∑

Pq→Pr
fkl(Pq → Pr). If we use the xkl

ij s, we have two more relations:

• By definition of the xkl
ij s,

∑

Ps
xkl

sq copies of the file Tk → Tl are sent from
the whole set of processors to Pq and will not be forwarded by it since Pq

will process Tl. In fact, we do not forbid a file to be sent to Pq while Pq do
not process it, even if this communication is completely useless. Similarly,
we do not forbid Pq to receive multiple copies of the same file. However,
we consider that Pq consumes exactly

∑

Ps
xkl

sq copies of Tk → Tl.

•
∑

Pt
xkl

qt copies of Tk → Tl are sent by Pq to the whole set of other proces-
sors. In this case, we recall that Pq needs to process Tk to be able to do
such communications.

Using these relations, we can write the following equation:

∑

Pr→Pq

fkl(Pr → Pq) −
∑

Pq→Pr

fkl(Pq → Pr) =
∑

Ps

xkl
sq −

∑

Pt

xkl
qt (3)

Figure 5 illustrates this idea for the file T2 → T4.
Then the complete linear program we want to solve to obtain a complete

and valid allocation is:

7

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

x24
25 = 1

y2
2 = 1

y4
5 = 1

f24(P3 → P5) = 1

f24(P2 → P3) = 1

P1

P2

P4P3

P5

P6

Figure 5: Flexible routing for file T2 → T4 sent from P2 to P5; only positive
values are displayed.



















































































∀Tk, ∀Pi yk
i ∈ {0, 1}

∀Tk → Tl, ∀Pi, ∀Pj xkl
ij ∈ {0, 1}

∀Tk

∑

Pi
yk

i = 1

∀Tk → Tl, ∀Pi, ∀Pj xkl
ij ≤ yk

i

∀Tk → Tl, ∀Pj yk
j +

∑

Pi
xkl

ij ≥ yl
j

∀Pi,
∑

Tk
yk

i wi,k ≤ T

∀Pq, ∀Tk → Tl

∑

Pr→Pq
fkl(Pr → Pq) −

∑

Pq→Pr
fkl(Pq → Pr) =

∑

Ps
xkl

sq −
∑

Pt
xkl

qt

∀Pi → Pj ,
∑

Tk→Tl

(

fkl(Pi → Pj)ci,jdatak,l

)

≤ T

∀Pi → Pj , ∀Tk → Tl, fkl(Pi → Pj) ≥ 0
(4)

In this linear program, the fkl functions have their values in R. Thus, any
file can be split in several packets following different paths, like IP packets over
the internet. We can force all packets to follow the same route, by forcing
fkl(Pi → Pj) to be in Z for any file Tk → Tl and for any link Pi → Pj .
If we use real number for the fkls instead of integer ones, another point of
view is to consider that we have several allocations with the same task-to-
processors mapping, but with different communication schemes. If we use again
the example shown in Figure 4, we can consider than one file over two is sent
through P3 and the other is sent through P4.

8

3 Looking for a small set of allocations: several

heuristics

4 A single linear program, for allocations allow-

ing duplication

In this section, we want to remove another constraint to the initial problem: any
intermediate task hacwsve to be processed by exactly one processor. Thus, we
look for a unique allocation allowing any task to be processed more than once.
The duplication of a task on two processors can be interesting by avoiding some
costly communications.

4.1 Linear Program no
365, for a single allocation for mul-

tiple tasks, fixed routing

We keep the notations yk
i and ykl

ij defined in Subsection 2.5. As in Section 2,
we begin by searching an allocation, such that communications respect given
communication paths between couples of processors.

We want to minimize T under the following constraints:































































∀Tk, ∀Pi yk
i ∈ {0, 1}

∀Tk → Tl, ∀Pi ; Pj xkl
ij ∈ {0, 1}

∑

Pi
yn

i ≥ 1

∀Tk → Tl, ∀Pi ; Pj xkl
ij ≤ yk

i

∀Tl, ∀Tk → Tl, ∀Pj

∑

Pi;Pj
xkl

ij ≥ yl
j

∀Pi,
∑

Tk
yk

i wi,k ≤ T

∀Pi → Pj ,
∑

Pq;Pr ,Pi→Pj∈Pq;Pr

(
∑

Tk→Tl

(

xkl
qrci,jdatak,l

))

≤ T

(5)
Note that we allow any processor to send multiple copies of the same file. How-
ever, only the processor computing a given task can do the duplication of a file.
Intermediate routers cannot duplicate them. Moreover, a given processor Pi can
send to another processor Pj a given file Tk → Tl at most once (this constrainst
comes from line 4). However, there is no interest in sending the same file twice
to the same processor.

Proof. all constraints are respected Now, we show that all properties given
in Subsection 1.2 are respected by a solution of our linear program.

• Property 1 is respected, since the yk
i are binary variables (line 1).

• Property 2 is respected, since the xkl
ij are binary variables (line 2).

• Property 3: since yk
i are binary variables, line 3 expresses that the

final task is processed by at least one processor,

9

• Property 4: we consider any task Tl and any of its input file Tk → Tl.
If Tl is processed by Pj , then we have yl

j = 1 and the file is correctly
sent to Pj by one of the Pis (line 5).

• Property 5: lines 6 and 7 ensure that this constraint is respected.

• Property 6: let consider any file Tk → Tl sent by Pi to Pj . Then we
have xkl

ij = 1 and thus yk
i = 1 (line 2): Tk is processed by Pi.

• Property 7: in this section, this property is not required to consider
an allocation as valid.

constraints are not too strong We can prove that the constraints given in
the linear program above are not too strong in the same way as in 2.5,
the only difference being the bound on the number of processor executing
any task.

4.2 Linear Program no
365, for a single allocation for mul-

tiple tasks, flexible routing


















































































∀Tk, ∀Pi yk
i ∈ {0, 1}

∀Tk → Tl, ∀Pi, ∀Pj xkl
ij ∈ {0, 1}

∑

Pi
yn

i ≥ 1

∀Tk → Tl, ∀Pi, ∀Pj xkl
ij ≤ yk

i

∀Tk → Tl, ∀Pj yk
j +

∑

Pi
xkl

ij ≥ yl
j

∀Pi,
∑

Tk
yk

i wi,k ≤ T

∀Pq, ∀Tk → Tl

∑

Pr→Pq
fkl(Pr → Pq) −

∑

Pq→Pr
fkl(Pq → Pr) =

∑

Ps
xkl

sq −
∑

Pt
xkl

qt

∀Pi → Pj ,
∑

Tk→Tl

(

fkl(Pi → Pj)ci,jdatak,l

)

≤ T

∀Pi → Pj , ∀Tk → Tl, fkl(Pi → Pj) ≥ 0
(6)

Note: in this model, if Pi computes the task Tk and has to send the resulting
files to both Pj and Pj′ via a common router Pr, Pi sends the file twice, Pr

receives it twice (although they are the same data in it) and sens them to Pj

and Pj′ . Of course, it should be more clever if Pi could send only one example
of the file to Pr, Pr duplicating the file to Pj and Pj′ .

To allow duplication of tasks among processors, we had to use integer vari-
ables instead of rational ones, even if mixed linear program are by far more
difficult to solve. However, we could still use rational variables to find the
best communication scheme. If we want to introduce the duplication of files by
intermediate routers, we have to use integer variables for communications.

Below stands the complete linear program, allowing duplication of files by
intermediate routers. For each file Tk → Tl, we introduce a new function gkl :
VP 7→ Z, which indicates whether the processor Pi has the file Tk → Tl (it can

10

have received it, or producted it).







































































































∀Tk, ∀Pi yk
i ∈ {0, 1}

∀Tk → Tl, ∀Pi, ∀Pj xkl
ij ∈ {0, 1}

∑

Pi
yn

i ≥ 1

∀Tk → Tl, ∀Pi, ∀Pj xkl
ij ≤ yk

i

∀Tl, ∀Tk → Tl, ∀Pj yk
j +

∑

Pi
xkl

ij ≥ yl
j

∀Pi,
∑

Tk
yk

i wi,k ≤ T

∀Pi → Pj , ∀Tk → Tl,
∑

Tk→Tl

(

fkl(Pi → Pj)ci,jdatak,l

)

≤ T

∀Pi → Pj , ∀Tk → Tl, fkl(Pi → Pj) ≥ 0

∀Pi → Pj , ∀Tk → Tl, gkl(Pi) ≥ fkl(Pi → Pj)

∀Pi, ∀Tk → Tl, gkl(Pi) ≥ 0

∀Pj , ∀Tk → Tl,
∑

Pi→Pj
fkl(Pi → Pj) + yk

j ≥ gkl(Pj)

(7)

11

